Factorization system

In mathematics, it can be shown that every function can be written as the composite of a surjective function followed by an injective function. Factorization systems are a generalization of this situation in category theory.

Definition

A factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that:

  1. E and M both contain all isomorphisms of C and are closed under composition.
  2. Every morphism f of C can be factored as f=m\circ e for some morphisms e\in E and m\in M.
  3. The factorization is functorial: if u and v are two morphisms such that vme=m'e'u for some morphisms e, e'\in E and m, m'\in M, then there exists a unique morphism w making the following diagram commute:


Remark: (u,v) is a morphism from me to m'e' in the arrow category.

Orthogonality

Two morphisms e and m are said to be orthogonal, denoted e\downarrow m, if for every pair of morphisms u and v such that ve=mu there is a unique morphism w such that the diagram

commutes. This notion can be extended to define the orthogonals of sets of morphisms by

H^\uparrow=\{e\quad|\quad\forall h\in H, e\downarrow h\} and H^\downarrow=\{m\quad|\quad\forall h\in H, h\downarrow m\}.

Since in a factorization system E\cap M contains all the isomorphisms, the condition (3) of the definition is equivalent to

(3') E\subset M^\uparrow and M\subset E^\downarrow.


Proof: In the previous diagram (3), take  m:= id ,\  e' := id (identity on the appropriate object) and  m' := m .

Equivalent definition

The pair (E,M) of classes of morphisms of C is a factorization system if and only if it satisfies the following conditions:

  1. Every morphism f of C can be factored as f=m\circ e with e\in E and m\in M.
  2. E=M^\uparrow and M=E^\downarrow.

Weak factorization systems

Suppose e and m are two morphisms in a category C. Then e has the left lifting property with respect to m (resp. m has the right lifting property with respect to e) when for every pair of morphisms u and v such that ve=mu there is a morphism w such that the following diagram commutes. The difference with orthogonality is that w is not necessarily unique.

A weak factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that :

  1. The class E is exactly the class of morphisms having the left lifting property wrt the morphisms of M.
  2. The class M is exactly the class of morphisms having the right lifting property wrt the morphisms of E.
  3. Every morphism f of C can be factored as f=m\circ e for some morphisms e\in E and m\in M.

References

This article is issued from Wikipedia - version of the Tuesday, October 27, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.