Dynamic financial analysis

Dynamic financial analysis (DFA) is a simulation approach that looks at an insurance enterprise's risks holistically as opposed to traditional actuarial analysis, which analyzes risks individually. Specifically, DFA reveals the dependencies of hazards and their impacts on the insurance company's financial well being such as business mix, reinsurance, asset allocation, profitability, solvency, and compliance.

In addition to projecting stochastic future economic scenarios through using scenario generators such as interest rate, underwriting cycle and jurisdictional risk models, DFA also links the scenarios with the financial models of the targeted insurance company that is being analyzed. Such models not only reveal the operation and the business structure of the company, but also uncover the dependencies among its business practices. Because DFA tries to account for every aspect of the company, it produces a vast amount of data. As a result, analyzing and presenting the outputs effectively is of great importance.

Objectives

DFA is used primarily by financial practitioners to manage profitability and financial stability (the risk control function of DFA)[1] Not only do DFA users seek to maximize shareholder values, but they also try to maintain customer values. Furthermore, outputs from DFA could help managers identify strengths and weaknesses of the following areas.[2]

Elements

DFA consists of the following 3 parts:[2]

Careful calibration is required to ensure the accuracy of the scenarios and the correlations among business models.

Scenario

The scenario generator must meet the following criteria:[2]

Interest rate generator

The interest rate generator is the core fundamental of DFA. Many sophisticated interest rate models were created in the effort to best imitate the real world interest rate behavior. Although none of the existing models are perfect, they have their own advantages and disadvantages. The following is a simple interest rate model used in a publicly access DFA model.[3]

Cox, Ingersoll, and Ross (CIR) interest rate generator

The CIR interest rate model characterizes the short-term interest rate as a mean-reverting stochastic projection. Although CIR was first used to project continuous changes in the interest rates, it is also acceptable to use it to project discrete changes from one time period to another. Below is the formula.

dr_t = a(b-r_t)\, dt + \sigma\sqrt{r_t}\, dW_t

where [3]

The CIR model has two components: a deterministic  a(b-r_t) and a stochastic part\sigma\sqrt{r_t}\, . The deterministic part will go in the reverse direction of what the current short term rate is heading. In other words, the further the current interest rate is from the long term expected rate, the harder the deterministic part tries to reverse it back to the long term mean.

The stochastic part is purely random; it can either help the current interest rate deviate from its long term mean or the reverse. Because this part is multiplied by the square root of the current interest rate, when the current interest rate is low, its impact is minimum, thus leading to the unlikelihood of the interest rate going below zero, and the interest rate cannot be negative. However, the reverse is true if the current rate is high.

Jurisdictional Risk Generator

In the United States, each state has its own regulatory, jurisdictional and legislative bodies, and there are advantages and disadvantages for an insurance company conducting businesses in different states. For example, some states have restrictions on how much rate increase that an insurance company can charge for the risks on which it takes. Such risk can severely hamper the insurance entity's profitability and operation.

In DFA, jurisdiction risk is reflected in two ways.[3]

  1. "Acceptable" rate changes: each state has its own limit for how much rate increase in percentage proportional to the existing rate an insurance company can charge without attracting regulators' scrutiny. Under the scenarios, if DFA indicates that the insurance company needs to charge more than the state's maximum limit for the risks, that should raise a red flag to the executives overseeing the insurance business in that region.
  2. Lag in implementing indicated rate changes: insurance companies often do not immediately implement the approved rate changes, and in fact there is often a lag of 3 to 6 months. The lag, shown in the model in terms of years, is longer in states with harsh rate regulation.
Underwriting Cycles Generator

The number of policies an insurance company can sell depends on the macroeconomic environment of the insurance industry. The DFA scenario accounts for this risk factor to best simulate the nature of insurance business.

Below are four underwriting cycles that an insurance company may experience.

Company and Strategy modeling

To estimate the impacts that the scenarios have on an insurance company, the company's business practices needed to be quantified and linked to the scenario factors such as interest rate and underwriting cycles.

Types of Models

Analysis and presentation

Without effective analysis and presentation, managers can hardly make any sense out of the vast amount of data that DFA produces. The goal of DFA is to help the managers to find out whether the company's current strategies are in line with its financial goals. Below are some tricks of conducting and presenting DFA analysis.[4]

  1. Keep communication concise and focused.
  2. Eliminate, if needed, part of the DFA's outputs that are irrelevant to the company's financial objectives.
  3. Include no more than four most important results in a brief executive summary, and support your statements with graphs and exhibits in the appendix.
  4. Focus on business development trend, as opposed to over emphasis on specific numbers or the details of the model. Keep in mind that DFA is only an estimate of what might happen.
  5. Support the DFA analysis with other available information within the company.

References

  1. Kaufmann, Roger. Andeas Gadmer. Ralf Klett. (2004, May) Introduction to Dynamic Financial Analysis. Retrieved October 23, 2009, from Casualty Actuarial Society website: http://www.casact.org/library/astin/vol31no1
  2. 1 2 3 Blum, Peter. Michel Dacorogna. (2004) Dynamic Financial Analysis, Retrieved October 23, 2009, from Converium Ltd website: http://www.scor.fr/www//index.php?id=350&L=2
  3. 1 2 3 D'arcy, Stephen P. Richard W. Gorvett. Thomas E. Hettinger. Robert J. Walling III. (1998, Summer) Using the Public Access DFA Model, Retrieved October 23, 2009, from Casualty Actuarial Society website: http://www.casact.org/pubs/forum/98sforum/
  4. Wiesner, Elizabeth R. Charles C. Emma. (2000, Summer) A Dynamic Financial Analysis Application Lined to Corporate Strategy, Retrieved October 23, 2009, from Casualty Actuarial Society website: http://www.casact.org/pubs/forum/00sforum/.
This article is issued from Wikipedia - version of the Monday, January 26, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.