Alternated order-4 hexagonal tiling
Ditetragonal tritetragonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | (3.4)4 |
Schläfli symbol | h{6,4} or {(3,4,4)} |
Wythoff symbol | 4 | 3 4 |
Coxeter diagram | |
Symmetry group | [(4,4,3)], (*443) |
Dual | Order-4-4-3_t0 dual tiling |
Properties | Vertex-transitive |
In geometry, the alternated order-4 hexagonal tiling or ditetragonal tritetratrigonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of {(4,4,3)}, h{6,4}, and hr{6,6}.
Uniform constructions
There are four uniform constructions, with some of lower ones which can be seen with two colors of triangles:
*443 | 3333 | *3232 | 3*22 |
---|---|---|---|
= | = | = = | = |
{(4,4,3)} = h{6,4} | hr{6,6} |
Related polyhedra and tiling
|
Symmetry: [6,6], (*662) | ||||||
---|---|---|---|---|---|---|
= = |
= = |
= = |
= = |
= = |
= = |
= = |
{6,6} = h{4,6} |
t{6,6} = h2{4,6} |
r{6,6} {6,4} |
t{6,6} = h2{4,6} |
{6,6} = h{4,6} |
rr{6,6} r{6,4} |
tr{6,6} t{6,4} |
Uniform duals | ||||||
V66 | V6.12.12 | V6.6.6.6 | V6.12.12 | V66 | V4.6.4.6 | V4.12.12 |
Alternations | ||||||
[1+,6,6] (*663) |
[6+,6] (6*3) |
[6,1+,6] (*3232) |
[6,6+] (6*3) |
[6,6,1+] (*663) |
[(6,6,2+)] (2*33) |
[6,6]+ (662) |
= | = | = | ||||
h{6,6} | s{6,6} | hr{6,6} | s{6,6} | h{6,6} | hrr{6,6} | sr{6,6} |
{Hidden end}}
Symmetry: [(4,4,3)] (*443) | [(4,4,3)]+ (443) |
[(4,4,3+)] (3*22) |
[(4,1+,4,3)] (*3232) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
h{6,4} t0{(4,4,3)} {(4,4,3)} |
h2{6,4} t0,1{(4,4,3)} r{(3,4,4)} |
{4,6} t1{(4,4,3)} {(4,3,4)} |
h2{6,4} t1,2{(4,4,3)} r{(4,4,3)} |
h{6,4} t2{(4,4,3)} {(3,4,4)} |
r{6,4} t0,2{(4,4,3)} r{(4,3,4)} |
t{4,6} t0,1,2{(4,4,3)} t{(4,3,4)} |
s{4,6} s{(4,4,3)} |
hr{6,4} hr{(4,3,4)} |
h{4,6} h{(4,3,4)} |
q{4,6} h2{(4,3,4)} |
Uniform duals | ||||||||||
V(3.4)4 | V3.8.4.8 | V(4.4)3 | V3.8.4.8 | V(3.4)4 | V4.6.4.6 | V6.8.8 | V3.3.3.4.3.4 | V(4.4.3)2 | V66 | V4.3.4.6.6 |
Coxeter diagrams |
||||||||
---|---|---|---|---|---|---|---|---|
Vertex figure |
66 | (3.4.3.4)2 | 3.4.6.6.4 | 6.4.6.4 | ||||
Image | ||||||||
Dual |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
Wikimedia Commons has media related to Uniform tiling 3-4-3-4-3-4-3-4. |
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
|
This article is issued from Wikipedia - version of the Tuesday, November 25, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.