Dirichlet beta function
In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.
Definition
The Dirichlet beta function is defined as
or, equivalently,
In each case, it is assumed that Re(s) > 0.
It is also the simplest example of a series non-directly related to which can also be factorized as an Euler product, thus leading to the idea of Dirichlet character defining the exact set of Dirichlet series having a factorization over the prime numbers.
At least for Re(s) ≥ 1:
Alternatively, the following definition, in terms of the Hurwitz zeta function, is valid in the whole complex s-plane:
Another equivalent definition, in terms of the Lerch transcendent, is:
which is once again valid for all complex values of s.
Also the series representation of Dirichlet beta function can be formed in terms of the polygamma function
Functional equation
The functional equation extends the beta function to the left side of the complex plane Re(s)<0. It is given by
where Γ(s) is the gamma function.
Special values
Some special values include:
where G represents Catalan's constant, and
where in the above is an example of the polygamma function. More generally, for any positive integer k:
where represent the Euler numbers. For integer k ≥ 0, this extends to:
Hence, the function vanishes for all odd negative integral values of the argument.
s | approximate value β(s) | OEIS |
---|---|---|
1/5 | 0.5737108471859466493572665 | A261624 |
1/4 | 0.5907230564424947318659591 | A261623 |
1/3 | 0.6178550888488520660725389 | A261622 |
1/2 | 0.6676914571896091766586909 | A195103 |
1 | 0.7853981633974483096156608 | A003881 |
2 | 0.9159655941772190150546035 | A006752 |
3 | 0.9689461462593693804836348 | A153071 |
4 | 0.9889445517411053361084226 | A175572 |
5 | 0.9961578280770880640063194 | A175571 |
6 | 0.9986852222184381354416008 | A175570 |
7 | 0.9995545078905399094963465 | |
8 | 0.9998499902468296563380671 | |
9 | 0.9999496841872200898213589 | |
10 | 0.9999831640261968774055407 |
There are zeros at -1; -3; -5; -7 etc.
See also
References
- Glasser, M. L. (1972). "The evaluation of lattice sums. I. Analytic procedures". J. Math. Phys. 14: 409. doi:10.1063/1.1666331.
- J. Spanier and K. B. Oldham, An Atlas of Functions, (1987) Hemisphere, New York.
- Weisstein, Eric W., "Dirichlet Beta Function", MathWorld.