Dental pulp stem cells

Dental Pulp Stem Cells, or (DPSCs) are multipotent stem cells that have the potential to differentiate into a variety of cell types.

More recently a subpopulation of dental pulp stem cells has been described as human Immature Dental Pulp Stem Cells (IDPSC).[1] There are various studies where the importance of these cells and their regenerative capacity has been demonstrated. Through the addition of tissue-specific cytokines, differentiated cells were obtained in vitro from these cells, not only of mesenchymal linage but also of endo- and ecto-dermal linage. Among them are the IPS, MAPCs cells.

Several publications have stressed the importance of the expression of pluripotentiality associated markers: the transcription factors Nanog, Sox2, Oct3/4, SSEA4, CD13, are indispensable for the stem cells to divide indefinitely without affecting their differentiation potential, i.e., maintaining their self-renovation capacity. The quantification of protein expression levels in these cells is very important in order to know their pluripotentiality level, as described in some publications.

Atari M et al, established a protocol for isolating and identifying the subpopulations of pluripotent- like stem cells from the dental pulp (DPPSC) These cells are SSEA4+, OCT3/4+, NANOG+, SOX2+, LIN28+, CD13+, CD105+, CD34-, CD45-, CD90+, CD29+, CD73+, STRO1+ and CD146-, and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique.

DPPSCs were able to form both embryoid bodies-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. DPPSCs can differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers.

Sodium Metaphosphates

Sodium Tri- and Hexametaphosphate have been used to promote the growth, differentiation, and angiogenic potential of HDPCs. These results suggest that Sodium Trimetaphosphate and Sodium Hexametaphosphate may be candidates for dental pulp tissue engineering and regenerative endodontics.[2]

Definition

Dental pulp is the soft living tissue inside a tooth. Stem cells are found inside the soft living tissue.[3] Scientists have identified the mesenchymal type of stem cell inside dental pulp. This particular type of stem cell has the future potential to differentiate into a variety of other cell types including:

History

References

  1. 1 2 Kerkis, Irina; Kerkis, Alexandre; Dozortsev, Dmitri; Stukart-Parsons, GaËlle Chopin; Gomes Massironi, SÍLvia Maria; Pereira, Lygia V.; Caplan, Arnold I.; Cerruti, Humberto F. (2006). "Isolation and Characterization of a Population of Immature Dental Pulp Stem Cells Expressing OCT-4 and Other Embryonic Stem Cell Markers". Cells Tissues Organs 184 (3–4): 105–16. doi:10.1159/000099617 (inactive 2015-01-12). PMID 17409736.
  2. "Effects of sodium tri- and hexametaphosphate on proliferation, differentiation, and angiogenic potential of human dental pulp cells". J Endod 41: 896–902. 2015. doi:10.1016/j.joen.2015.01.038. PMID 25777500.
  3. 1 2 National Institute of Health (NIH) press release Monday, April 21, 2003 http://www.nih.gov/news/pr/apr2003/nidcr-21.html
  4. 1 2 Gandia, Carolina; Armiñan, Ana; García-Verdugo, Jose Manuel; Lledó, Elisa; Ruiz, Amparo; Miñana, M Dolores; Sanchez-Torrijos, Jorge; Payá, Rafael; et al. (2008). "Human Dental Pulp Stem Cells Improve Left Ventricular Function, Induce Angiogenesis, and Reduce Infarct Size in Rats with Acute Myocardial Infarction". Stem Cells 26 (3): 638–45. doi:10.1634/stemcells.2007-0484 (inactive 2015-01-12). PMID 18079433.
  5. 1 2 Nosrat, I; Widenfalk, J; Olson, L; Nosrat, CA (2001). "Dental Pulp Cells Produce Neurotrophic Factors, Interact with Trigeminal Neurons in Vitro, and Rescue Motoneurons after Spinal Cord Injury". Developmental Biology 238 (1): 120–32. doi:10.1006/dbio.2001.0400. PMID 11783998.
  6. 1 2 3 Kerkis, Irina; Ambrosio, Carlos E; Kerkis, Alexandre; Martins, Daniele S; Zucconi, Eder; Fonseca, Simone AS; Cabral, Rosa M; Maranduba, Carlos MC; Gaiad, Thais P; Morini, Adriana C; Vieira, Natassia M; Brolio, Marina P; Sant'Anna, Osvaldo A; Miglino, Maria A; Zatz, Mayana (2008). "Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic?". Journal of Translational Medicine 6: 35. doi:10.1186/1479-5876-6-35. PMC 2529267. PMID 18598348.
  7. 1 2 Graziano, Antonio; D'aquino, Riccardo; Angelis, Maria Gabriella Cusella-De; De Francesco, Francesco; Giordano, Antonio; Laino, Gregorio; Piattelli, Adriano; Traini, Tonino; et al. (2008). "Scaffold's surface geometry significantly affects human stem cell bone tissue engineering". Journal of Cellular Physiology 214 (1): 166–72. doi:10.1002/jcp.21175. PMID 17565721.
  8. 1 2 D’aquino, Riccardo; Papaccio, Gianpaolo; Laino, Gregorio; Graziano, Antonio (2008). "Dental Pulp Stem Cells: A Promising Tool for Bone Regeneration". Stem Cell Reviews 4 (1): 21–6. doi:10.1007/s12015-008-9013-5. PMID 18300003.
  9. 1 2 Stem Cell Information, National Institute of Health
  10. 1 2 : 204–10. doi:10.1097/scs.0b013e31815c8a54 (inactive 2015-01-12). Missing or empty |title= (help)
  11. Onyekwelu, O; Seppala, M; Zoupa, M; Cobourne, MT (2007). "Tooth development: 2. Regenerating teeth in the laboratory". Dental update 34 (1): 20–2, 25–6, 29. PMID 17348555.
  12. Cordeiro, Mabel M.; Dong, Zhihong; Kaneko, Tomoatsu; Zhang, Zhaocheng; Miyazawa, Marta; Shi, Songtao; Smith, Anthony J.; Nör, Jacques E. (2008). "Dental Pulp Tissue Engineering with Stem Cells from Exfoliated Deciduous Teeth". Journal of Endodontics 34 (8): 962–9. doi:10.1016/j.joen.2008.04.009. PMID 18634928.
This article is issued from Wikipedia - version of the Sunday, January 10, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.