Corey–Fuchs reaction

Corey–Fuchs reaction
Named after Elias James Corey
Philip L. Fuchs
Reaction type Substitution reaction
Identifiers
Organic Chemistry Portal corey-fuchs-reaction
RSC ontology ID RXNO:0000146

The Corey–Fuchs reaction, also known as the Ramirez–Corey–Fuchs reaction, is a series of chemical reactions designed to transform an aldehyde into an alkyne. The formation of the 1,1-dibromoolefins via phosphine-dibromomethylenes was originally discovered by Desai, McKelvie and Ramirez. The second step of the reaction to convert dibromoolefins to alkynes is known as Fritsch–Buttenberg–Wiechell rearrangement. The overall combined transformation of an aldehyde to an alkyne by this method is named after its developers, American chemists Elias James Corey and Philip L. Fuchs.

By suitable choice of base, it is often possible to stop the reaction at the 1-bromoalkyne, a useful functional group for further transformation.

Reaction mechanism

The Corey–Fuchs reaction is based on a special case of the Wittig Reaction, where the phosphorus ylide is formed from dibromocarbene. This carbene is generated in situ from the reaction of Triphenylphosphine and carbon tetrabromide.

Triphenylphosphine then attacks the nascent carbene to form the reactive ylide. This ylide undergoes a Wittig Reaction when exposed to an aldehyde.

Deprotonation of the weakly acidic olefinic proton with butyllithium gives rise to a lithio-olefinic species which can undergo a beta-elimination to produce the bromoalkyne. Further treatment with butyllithium allows for a lithium–halogen exchange and the intermediate can be quenched with an electrophile, such as water or an alkyl halide, transforming the bromoalkyne to the terminal acetylene, or the internal alkyne, respectively.

See also

References

  1. ^ Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769–3772. doi:10.1016/S0040-4039(01)94157-7
  2. ^ Mori, M.; Tonogaki, K.; Kinoshita, A. Organic Syntheses, Vol. 81, p. 1 (2005). (Article)
  3. ^ Marshall, J. A.; Yanik, M. M.; Adams, N. D.; Ellis, K. C.; Chobanian, H. R. Organic Syntheses, Vol. 81, p. 157 (2005). (Article)
  4. ^ N. B. Desai, N. McKelvie, F. Ramirez JACS, Vol. 84, p. 1745-1747 (1962). doi:10.1021/ja00868a057

External links

This article is issued from Wikipedia - version of the Saturday, October 10, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.