Core (graph theory)
This article is about graph homomorphisms. For the subgraph in which all vertices have high degree, see k-core.
In the mathematical field of graph theory, a core is a notion that describes behavior of a graph with respect to graph homomorphisms.
Definition
Graph is a core if every homomorphism is an isomorphism, that is it is a bijection of vertices of .
A core of a graph is a graph such that
- There exists a homomorphism from to ,
- there exists a homomorphism from to , and
- is minimal with this property.
Two graphs are said to be homomorphism equivalent or hom-equivalent if they have isomorphic cores.
Examples
- Any complete graph is a core.
- A cycle of odd length is its own core.
- Every two cycles of even length, and more generally every two bipartite graphs are hom-equivalent. The core of each of these graphs is the two-vertex complete graph K2.
Properties
Every graph has a core, which is determined uniquely, up to isomorphism. The core of a graph G is always an induced subgraph of G. If and then the graphs and are necessarily hom-equivalent.
References
- Godsil, Chris, and Royle, Gordon. Algebraic Graph Theory. Graduate Texts in Mathematics, Vol. 207. Springer-Verlag, New York, 2001. Chapter 6 section 2.
- Nešetřil, Jaroslav; Ossona de Mendez, Patrice (2012), "Proposition 3.5", Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics 28, Heidelberg: Springer, p. 43, doi:10.1007/978-3-642-27875-4, ISBN 978-3-642-27874-7, MR 2920058.
This article is issued from Wikipedia - version of the Sunday, January 31, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.