Computer-aided engineering

Nonlinear static analysis of a 3D structure subjected to plastic deformations

Computer-aided engineering (CAE) is the broad usage of computer software to aid in engineering analysis tasks. It includes Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody dynamics (MBD), and optimization.

Overview

Software tools that have been developed to support these activities are considered CAE tools. CAE tools are being used, for example, to analyze the robustness and performance of components and assemblies. The term encompasses simulation, validation, and optimization of products and manufacturing tools. In the future, CAE systems will be major providers of information to help support design teams in decision making. Computer-aided engineering is used in many fields such as automotive, aviation, space, and shipbuilding industries.[1]

In regard to information networks, CAE systems are individually considered a single node on a total information network and each node may interact with other nodes on the network.

CAE systems can provide support to businesses. This is achieved by the use of reference architectures and their ability to place information views on the business process. Reference architecture is the basis from which information model, especially product and manufacturing models.

The term CAE has also been used by some in the past to describe the use of computer technology within engineering in a broader sense than just engineering analysis. It was in this context that the term was coined by Jason Lemon, founder of SDRC in the late 1970s. This definition is however better known today by the terms CAx and PLM.

CAE fields and phases

CAE areas covered include:

In general, there are three phases in any computer-aided engineering task:

This cycle is iterated, often many times, either manually or with the use of commercial optimization software.

CAE in the automotive industry

CAE tools are very widely used in the automotive industry. In fact, their use has enabled the automakers to reduce product development cost and time while improving the safety, comfort, and durability of the vehicles they produce. The predictive capability of CAE tools has progressed to the point where much of the design verification is now done using computer simulations rather than physical prototype testing. CAE dependability is based upon all proper assumptions as inputs and must identify critical inputs (BJ). Even though there have been many advances in CAE, and it is widely used in the engineering field, physical testing is still used as a final confirmation for subsystems because CAE cannot predict all variables in complex assemblies (i.e. metal stretch, thinning).

See also

References

  1. Saracoglu, B. O. (2006). "Identification of Technology Performance Criteria for CAD/CAM/CAE/CIM/CAL in Shipbuilding Industry". doi:10.1109/PICMET.2006.296739.

Further reading

  • B. Raphael and I.F.C. Smith (2003). Fundamentals of computer aided engineering. John Wiley. ISBN 978-0-471-48715-9.

External links

Wikimedia Commons has media related to Computer Aided Engineering (CAE).
This article is issued from Wikipedia - version of the Saturday, December 19, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.