Circle packing in an isosceles right triangle
Circle packing in a right isosceles triangle is a packing problem where the objective is to pack n unit circles into the smallest possible isosceles right triangle.
Minimum solutions (lengths shown are length of leg) are shown in the table below.[1] Solutions to the equivalent problem of maximizing the minimum distance between n points in an isosceles right triangle, are known to be optimal for n< 8.[2] In 2011 a heuristic algorithm found 18 improvements on previously known optima, the smallest of which was for n=13.[3]
Number of circles | Length |
---|---|
1 | 3.414... |
2 | 4.828... |
3 | 5.414... |
4 | 6.242... |
5 | 7.146... |
6 | 7.414... |
7 | 8.181... |
8 | 8.692... |
9 | 9.071... |
10 | 9.414... |
11 | 10.059... |
12 | 10.422... |
13 | 10.798... |
14 | 11.141... |
15 | 11.414... |
References
- ↑ Specht, Eckard (2011-03-11). "The best known packings of equal circles in an isosceles right triangle". Retrieved 2011-05-01.
- ↑ Xu, Y. (1996). "On the minimum distance determined by n (≤ 7) points in an isoscele right triangle". Acta Mathematicae Applicatae Sinica 12 (2): 169–175. doi:10.1007/BF02007736.
- ↑ López, C. O.; Beasley, J. E. (2011). "A heuristic for the circle packing problem with a variety of containers". European Journal of Operational Research 214 (3): 512. doi:10.1016/j.ejor.2011.04.024.
|
This article is issued from Wikipedia - version of the Friday, September 04, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.