Channelopathy
Channelopathy | |
---|---|
Classification and external resources | |
MeSH | D053447 |
Channelopathies are diseases caused by disturbed function of ion channel subunits or the proteins that regulate them.[1][2] These diseases may be either congenital (often resulting from a mutation or mutations in the encoding genes) or acquired[3] (often resulting from autoimmune attack on an ion channel).
There are a large number of distinct dysfunctions known to be caused by ion channel mutations. The genes for the construction of ion channels are highly conserved amongst mammals and one condition, hyperkalemic periodic paralysis, was first identified in the descendants of Impressive, a registered Quarter Horse (see AQHA website).
The channelopathies of human skeletal muscle include hyper- and hypokalemic (high and low potassium blood concentrations) periodic paralysis, myotonia congenita and paramyotonia congenita.
Types
The types in the following table are commonly accepted. Channelopathies currently under research, like Kir4.1 potassium channel in multiple sclerosis, are not included.
References
- ↑ Kim, JB (2014). "channelopathies". Korean Journal of Pediatrics 57 (1): 1–18. doi:10.3345/kjp.2014.57.1.1. PMC 3935107. PMID 24578711.
- ↑ Robert S. Kass (2005). "The channelopathies: novel insights into molecular and genetic mechanisms of human disease". Journal of Clinical Investigation 115 (8): 1986–9. doi:10.1172/JCI26011. PMC 1180558. PMID 16075038.
- ↑ Sid Gilman (2007). Neurobiology of disease. Academic Press. pp. 319–. ISBN 978-0-12-088592-3. Retrieved 22 November 2010.
- ↑ Hunter JV, Moss AJ (January 2009). "Seizures and arrhythmias: Differing phenotypes of a common channelopathy?". Neurology 72 (3): 208–9. doi:10.1212/01.wnl.0000339490.98283.c5. PMID 19153369. Retrieved 2009-04-30.
- ↑ Mulley JC, Scheffer IE, Petrou S, Berkovic SF (April 2003). "Channelopathies as a genetic cause of epilepsy". Current Opinion in Neurology 16 (2): 171–6. doi:10.1097/00019052-200304000-00009. PMID 12644745. Retrieved 2009-04-30.
Bibliography
- Song, YW; Kim, SJ; Heo, TH; Kim, MH; Kim, JB (2012). "Normokalemic periodic paralysis is not a distinct disease". Muscle & Nerve 46 (6): 908–913. doi:10.1002/mus.23441. PMID 22926674.
External links
VIDEO Channel Surfing in Pediatrics by Carl E. Stafstrom, M.D., at the UW-Madison Health Sciences Learning Center.
- "The Weiss Lab". The Weiss Lab is investigating the molecular and cellular mechanisms underlying human diseases caused by dysfunction of ion channels.
- The Channelopathy Foundation - Foundation for Ion Channel diseases
- Cystic Fibrosis Foundation
- Rare Diseases Clinical Research Network
|
|