Cerebellum granule cell

Cerebellar granule cell

Granule cells, parallel fibers, and flattened dendritic trees of Purkinje cells
Details
Location Cerebellum
Morphology small cell with few dendrites
Function excitatory
Neurotransmitter glutamate
Presynaptic connections Mossy fibers and Golgi cells
Postsynaptic connections Parallel fibers to cerebellar cortex

Anatomical terminology

Granule cells of the cerebellum are among the smallest neurons in the brain. (The term granule cell is used for several unrelated types of small neurons in various parts of the brain.) Cerebellar granule cells are also easily the most numerous neurons in the brain: in humans, estimates of their total number average around 50 billion, which means that they constitute about 3/4 of the brain's neurons.[1]

Development

In normal development, endogenous Sonic hedgehog signaling stimulates rapid proliferation of cerebellar granule neuron progenitors (CGNPs) in the external granule layer (EGL). Cerebellum development occurs during late embryogenesis and the early postnatal period, with CGNP proliferation in the EGL peaking during early development (P7, postnatal day 7, in the mouse).[2] As CGNPs terminally differentiate into cerebellum granule cells (also called cerebellar granule neurons, CGNs), they migrate to the internal granule layer (IGL), forming the mature cerebellum (by P20, post-natal day 20 in the mouse).[2] Mutations that abnormally activate Sonic hedgehog signaling predispose to cancer of the cerebellum (medulloblasoma) in humans with Gorlin Syndrome and in genetically engineered mouse models.[3][4]

Description

The cell bodies are packed into a thick layer at the bottom of the cerebellar cortex. A granule cell emits only four to five dendrites, each of which ends in an enlargement called a dendritic claw.[1] These enlargements are sites of excitatory input from mossy fibers and inhibitory input from Golgi cells.

The thin, unmyelinated axons of granule cells rise vertically to the upper (molecular) layer of the cortex, where they split in two, with each branch traveling horizontally to form a parallel fiber; the splitting of the vertical branch into two horizontal branches gives rise to a distinctive "T" shape. A parallel fiber runs for an average of 3 mm in each direction from the split, for a total length of about 6 mm (about 1/10 of the total width of the cortical layer).[1] As they run along, the parallel fibers pass through the dendritic trees of Purkinje cells, contacting one of every 3-5 that they pass, making a total of 80-100 synaptic connections with Purkinje cell dendritic spines.[1] Granule cells use glutamate as their neurotransmitter, and therefore exert excitatory effects on their targets.

Function

Granule cells receive all of their input from mossy fibers, but outnumber them 200 to 1 (in humans). Thus, the information in the granule cell population activity state is the same as the information in the mossy fibers, but recoded in a much more expansive way. Because granule cells are so small and so densely packed, it has been very difficult to record their spike activity in behaving animals, so there is little data to use as a basis of theorizing. The most popular concept of their function was proposed by David Marr, who suggested that they could encode combinations of mossy fiber inputs. The idea is that with each granule cell receiving input from only 4–5 mossy fibers, a granule cell would not respond if only a single one of its inputs was active, but would respond if more than one were active. This "combinatorial coding" scheme would potentially allow the cerebellum to make much finer distinctions between input patterns than the mossy fibers alone would permit.[5]

References

  1. 1 2 3 4 Llinas RR, Walton KD, Lang EJ (2004). "Ch. 7 Cerebellum". In Shepherd GM. The Synaptic Organization of the Brain. New York: Oxford University Press. ISBN 0-19-515955-1.
  2. 1 2 Hatten, M (1995). "Mechanisms of neural patterning and specification in the developing cerebellum.". Annu Rev Neurosci. PMID 7605067.
  3. Roussel, M (2011). "Cerebellum development and medulloblastoma.". Curr Top Dev Biol. PMID 21295689.
  4. Polkinghorn, W (2007). "Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification.". Nat Clin Pract Oncol. PMID 17464337.
  5. Marr D (1969). "A theory of cerebellar cortex". J. Physiol. Lond. 202: 437–70. doi:10.1113/jphysiol.1969.sp008820. PMC 1351491. PMID 5784296.
This article is issued from Wikipedia - version of the Wednesday, January 20, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.