Celastrales

Celastrales
Euonymus europaea, Celastraceae family
Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
(unranked): Eurosids I
Order: Celastrales
Link[1]
Families

Celastraceae
Lepidobotryaceae

Celastrales is an order of flowering plants. They are found throughout the tropics and subtropics, with only a few species extending far into the temperate regions. There are about 1200 [2] to 1350 [3] species in about 100 genera. All but 7 of these genera are in the large family Celastraceae. Until recently, the composition of the order and its division into families varied greatly from one author to another.

Description

Celastrales is a diverse order that has no conspicuous distinguishing characteristic and is consequently hard to recognize.[4] The flowers are usually small with a conspicuous nectary disk. The stipules are small or rarely absent. The micropyle has 2 openings and is therefore called a bistomal micropyle. Flowers with well-developed male and female parts are often functionally unisexual. The seed often has an aril. In bud, the sepals have a quincuncial arrangement. This means that 2 sepals are inside, 2 are outside, and the other has one side covered and one side exposed.

Relationships

Perhaps the most conspicuous and unusual trait of Celastrales is the nectary disk, a feature that it shares with another rosid order, Sapindales. Since the 2 orders are not closely related, the disk must have been an independent development in each of these 2 lines.

Celastrales is a member of the COM clade [5] of Fabidae, with Fabidae being one of the 2 groups of Eurosids.[6] The COM clade consists of 3 orders, Celastrales, Oxalidales (including Huaceae), and Malpighiales.

Circumscription

The name Celastrales was first used by Thomas Baskerville in 1839.[7] In the time since Baskerville first defined the order, until the 21st century, there were great differences of opinion about what should be included in the order and in its largest family, Celastraceae. The family Celastraceae was the only group consistently placed in the order by all authors who accepted it. Because of the ambiguity and complexity of its definition, Celastraceae became a dumping ground for genera of dubious affinity. Several genera were assigned to this family with considerable doubt about whether they really belonged there. Also, some genera that properly belong in Celastraceae were placed elsewhere.

By the end of the 20th century, Goupia and Forsellesia had been excluded from Celastraceae and also from Celastrales. Goupia is now in Malpighiales.[8] Forsellesia is now in Crossosomatales.[9] It continues to be the subject of a dispute about whether its proper name is Forsellesia or Glossopetalon.[10]

After being placed elsewhere, Canotia, Brexia, and Plagiopteron were found to belong in Celastraceae. The family Hippocrateaceae was found to be deeply nested within Celastraceae and is no longer recognized as a separate family.

In 2000, Vincent Savolainen et alii found that 3 families - Lepidobotryaceae, Parnassiaceae, and Celastraceae - were closely related.[11] They stated that these three families should constitute the order Celastrales, and this idea was accepted by the Angiosperm Phylogeny Group, which later subsumed Parnassiaceae into Celastraceae. Savolainen and co-authors also excluded Lophopyxis from Celastrales. Lophopyxis now constitutes a monogeneric family in Malpighiales.[8]

In 2001, in a molecular phylogenetic study of DNA sequences, Mark Simmons and others confirmed all of these results except for the placement of Lophopyxis and Lepidobotryaceae, which they did not sample.[12]

In 2006, Li-Bing Zhang and Mark Simmons produced a phylogeny of Celastrales based on nuclear ribosomal and chloroplast DNA.[13] Their results showed that Bhesa and Perrottetia were misplaced in Celastraceae. Bhesa is now in Centroplacaceae, a family in Malpighiales.[8] and Perrottetia is in Huerteales.[14] Zhang and Simmons found Pottingeria and Mortonia to be closely related to the families Parnassiaceae and Celastraceae, as they were then defined, but not in either of them. These two genera are therefore in Celastrales. They found that Siphonodon and Empleuridium are proper members of Celastraceae, removing considerable doubt about their placement there. They also showed that the small family Stackhousiaceae, consisting of three genera, is embedded in Celastraceae. Except for taxa that were not sampled, these results were confirmed by the second phylogeny of Celastrales, which was produced by Mark Simmons and several co-authors in 2008.[15]

Nicobariodendron sleumeri, the only member of its genus, continues to be an enigma. It is a small tree from the Andaman and Nicobar Islands of India. Little is known of it and it has never been sampled for DNA. It is generally thought to belong in Celastrales,[3] but this is not a certainty. It is one of the five taxa placed incertae sedis in the angiosperms in the APG III system of classification.[1]

Families

Celastrales has been divided into families in various ways. In their APG II classification in 2003, the Angiosperm Phylogeny Group recognized 3 families in Celastrales - Lepidobotryaceae, Parnassiaceae, and Celastraceae. When they revised their classification in 2009, they recognized only two families because Pottingeria and the two genera of Parnassiaceae were transferred to Celastraceae. Nicobariodendron became one of the five taxa placed incertae sedis in the angiosperms.

In the 2006 phylogeny, Nicobariodendron was not sampled, but those species that were sampled fell into 2 strongly supported clades. One was a small clade consisting only of the family Lepidobotryaceae. Its sister was a very large clade containing the rest of the order. The large clade consisted of 5 strongly supported groups. These are the family Parnassiaceae, the genus Pottingeria, the genus Mortonia (in Celastraceae), and a pair of genera from Celastraceae (Quetzalia and Zinowiewia), and the rest of Celastraceae. No relationships were resolved among these 5 groups.

In 2008, Simmons and others produced a phylogeny of Celastrales that achieved better resolution than the 2006 study by sampling more species and more DNA. They found the same pentatomy of five strongly supported groups that the previous study had found, but only weak to moderate support for any relationships between the five groups.[15] In the APG III system, Celastraceae was expanded to consist of these five groups. No one has yet published an intrafamilial classification for the expanded Celastraceae.[1]

Phylogeny

The following phylogenetic tree was made by combining parts of three different trees.[12][13][15] Bootstrap support is 100% except where shown. Branches with less than 50% bootstrap support are collapsed. The clade numbers are from Simmons et alii (2008).[15]

Celastrales  
Lepidobotryaceae

Lepidobotrys



Ruptiliocarpon






Lepuropetalon



Parnassia



68 

Pottingeria



Mortonia



56 


Quetzalia



Zinowiewia




CLADE 1 


Peripterygia



Siphonodon



80 

Dicarpellum




Tripterococcus




Macgregoria



Stackhousia






Menepetalum



Psammomoya




Denhamia




87 
CLADE 2 

Maytenus


53 

Gyminda


89 


Tripterygium



Celastrus



99 

Paxistima



Crossopetalum



Canotia



Euonymus






CLADE 3  89
CLADE 4 

Empleuridium


72 

Pterocelastrus


69 

Mystroxylon



Robsonodendron





CLADE 5  50

Salaciopsis


CLADE 6 
96 

Catha




Hartogiella


   

Cassine



Maurocenia





98 

Lydenburgia



Gymnosporia




CLADE 7 
   
   

Polycardia



Brexia



   

Pleurostylia


   

Elaeodendron



Pseudocatha






Kokoona





Lophopetalon




Salacia



Tontelea






Plagiopteron



Hippocratea



Pristimera



Loeseneriella












Wikimedia Commons has media related to Celastrales.

References

  1. 1 2 3 Angiosperm Phylogeny Group (2009). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III" (PDF). Botanical Journal of the Linnean Society 161 (2): 105–121. doi:10.1111/j.1095-8339.2009.00996.x. Retrieved 2013-07-06.
  2. "Lepidobotryaceae", "Parnassiaceae", and "Celastraceae" In: Klaus Kubitzki (ed.). The Families and Genera of Vascular Plants vol. VI. Springer-Verlag: Berlin;Heidelberg, Germany. (2004). ISBN 978-3-540-06512-8 (vol. VI).
  3. 1 2 Peter F. Stevens (2001 onwards). Celastrales At: Angiosperm Phylogeny at Missouri Botanical Garden
  4. Matthews, Merran L.; Endress, Peter K. (2005). "Comparative floral structure and systematics in Celastrales". Botanical Journal of the Linnean Society 149 (2): 129–194. doi:10.1111/j.1095-8339.2005.00445.x.
  5. Hengchang Wang, Michael J. Moore, Pamela S. Soltis, Charles D. Bell, Samuel F. Brockington, Roolse Alexandre, Charles C. Davis, Maribeth Latvis, Steven R. Manchester, and Douglas E. Soltis (2009). "Rosid radiation and the rapid rise of angiosperm-dominated forests". Proceedings of the National Academy of Sciences 106 (10): 3853–3858. doi:10.1073/pnas.0813376106. PMC 2644257. PMID 19223592
  6. Cantino, Philip D.; Doyle, James A.; Graham, Sean W.; Judd, Walter S.; Olmstead, Richard G.; Soltis, Douglas E.; Soltis, Pamela S.; Donoghue, Michael J. (2007). "Towards a phylogenetic nomenclature of Tracheophyta".". Taxon 56 (3): 822–846. doi:10.2307/25065865.
  7. Thomas Baskerville. Affinities of Plants: with some observations upon progressive development. page 104.. Taylor and Walton: Gower Street, London. (1839).
  8. 1 2 3 Wurdack, Kenneth J.; Davis, Charles C. (2009). "Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant clades in the angiosperm tree of life". American Journal of Botany 96 (8): 1551–1570. doi:10.3732/ajb.0800207. PMID 21628300.
  9. Thorne, Robert F.; Scogin, Ron (1978). "Forsellesia Greene (Glossopetalon Gray), a third genus in the Crossosomataceae (Rosinae, Rosales)". Aliso 9 (2): 171–178.
  10. Victoria Sosa. "Crossosomataceae" In: Klaus Kubitzki (ed.) The Families and Genera of Vascular Plants vol.IX. Springer-Verlag: Berlin,Heidelberg (2007).
  11. Savolainen, V.; Fay, M. F.; Albach, D. C.; Backlund, A.; Van Der Bank, M.; Cameron, K. M.; Johnson, S. A.; Lledó, M. D.; et al. (2000). "Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences". Kew Bulletin 55 (2): 257–309. doi:10.2307/4115644. JSTOR 4115644.
  12. 1 2 Simmons, Mark P.; Savolainen, Vincent; Clevinger, Curtis C.; Archer, Robert H.; Davis, Jerrold I. (2001). "Phylogeny of Celastraceae Inferred from 26S Nuclear Ribosomal DNA, Phytochrome B, rbcL, atpB, and Morphology". Molecular Phylogenetics and Evolution 19 (3): 353–366. doi:10.1006/mpev.2001.0937. PMID 11399146.
  13. 1 2 Li-Bing, Zhang; Simmons, Mark P. (2006). "Phylogeny and Delimitation of the Celastrales Inferred from Nuclear and Plastid Genes". Systematic Botany 31 (1): 122–137. doi:10.1600/036364406775971778.
  14. Worberg, Andreas; Alford, Mac H.; Quandt, Dietmar; Borsch, Thomas (2009). "Huerteales sister to Brassicales plus Malvales, and newly circumscribed to include Dipentodon, Gerrardina, Huertea, Perrottetia, and Tapiscia". Taxon 58 (2): 468–478.
  15. 1 2 3 4 Mark P. Simmons, Jennifer J. Cappa, Robert H. Archer, Andrew J. Ford, Dedra Eichstedt, and Curtis C. Clevinger (2008). "Phylogeny of the Celastreae (Celastraceae) and the relationships of Catha edulis (qat) inferred from morphological characters and nuclear and plastid genes". Molecular Phylogenetics and Evolution 48 (2): 745–757. doi:10.1016/j.ympev.2008.04.039. PMID 18550389
This article is issued from Wikipedia - version of the Tuesday, October 27, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.