Thiophosgene

Thiophosgene
Names
IUPAC name
Carbonothioyl dichloride
Other names
Thiophosgene; Thiocarbonyl chloride; Carbonothioic dichloride
Identifiers
463-71-8 YesY
ChEBI CHEBI:29366 YesY
ChemSpider 9645 YesY
Jmol interactive 3D Image
PubChem 10040
RTECS number XN2450000
UNII 067FQP576P YesY
Properties
CSCl2
Molar mass 114.98 g/mol
Appearance Red liquid
Density 1.50 g/cm3
Boiling point 70 to 75 °C (158 to 167 °F; 343 to 348 K)
Decomposition
Solubility in other solvents polar organic solvents
rxn with amines and alcohols
1.558
Structure
planar, sp2, C2v
Hazards
Main hazards Highly toxic
Flash point 62 °C (144 °F; 335 K)
Related compounds
Related compounds
Phosgene
Thiocarbonyl fluoride
Thiocarbonyl bromide
Sulfur dichloride
thionyl chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Thiophosgene is a red liquid with the formula CSCl2. It is a molecule with trigonal planar geometry. There are two reactive C–Cl bonds that allow it to be used in diverse organic syntheses.

Synthesis of CSCl2

CSCl2 is prepared in a two-step process from carbon disulfide. In the first step, carbon disulfide is chlorinated to give trichloromethanesulfenyl chloride, CCl3SCl:

CS2 + 3 Cl2 → CCl3SCl + S2Cl2

The chlorination must be controlled as excess chlorine converts trichloromethanesulfenyl chloride into carbon tetrachloride. Steam distillation separates the trichloromethanesulfenyl chloride, a rare sulfenyl chloride, and hydrolyzes the sulfur monochloride. Reduction of trichloromethanesulfenyl chloride produces thiophosgene:

CCl3SCl + M → CSCl2 + MCl2

Typically, tin is used for the reducing agent M.[1]

Uses of CSCl2

CSCl2 is mainly used to prepare compounds with the connectivity CSX2 where X = OR, NHR.[2] Such reactions proceed via intermediate such as CSClX. Under certain conditions, one can convert primary amines into isothiocyanates. CSCl2 also serves as a dienophile to give, after reduction 5-thiacyclohexene derivatives. Thiophosgene is also known as the appropriate reagent in Corey-Winter synthesis for stereospecific conversion of 1,2-diols into olefins.[3]

Safety considerations

CSCl2 is considered highly toxic.

References

  1. Dyson, G. M. (1926). "Thiophosgene" (PDF). Org. Synth. 6: 86. doi:10.15227/orgsyn.006.0086.; Coll. Vol. 1, p. 506
  2. Pascual, Roxana Martinez "Thiophosgene" Synlett 2015, vol. 26, pp. 1776-1777. doi:10.1055/s-0034-1380659
  3. Sharma, S. (1978). "Thiophosgene in Organic Synthesis". Synthesis 1978 (11): 803–820. doi:10.1055/s-1978-24896.
This article is issued from Wikipedia - version of the Tuesday, November 03, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.