Cantellated 5-simplexes


5-simplex

Cantellated 5-simplex

Bicantellated 5-simplex

Birectified 5-simplex

Cantitruncated 5-simplex

Bicantitruncated 5-simplex
Orthogonal projections in A5 Coxeter plane

In five-dimensional geometry, a cantellated 5-simplex is a convex uniform 5-polytope, being a cantellation of the regular 5-simplex.

There are unique 4 degrees of cantellation for the 5-simplex, including truncations.

Cantellated 5-simplex

Cantellated 5-simplex
Type Uniform 5-polytope
Schläfli symbol rr{3,3,3,3} = r\left\{\begin{array}{l}3, 3, 3\\3\end{array}\right\}
Coxeter-Dynkin diagram
or
4-faces 27 6 r{3,3,3}
6 rr{3,3,3}
15 {}x{3,3}
Cells 135 30 {3,3}
30 r{3,3}
15 rr{3,3}
60 {}x{3}
Faces 290 200 {3}
90 {4}
Edges 240
Vertices 60
Vertex figure
Tetrahedral prism
Coxeter group A5 [3,3,3,3], order 720
Properties convex

The cantellated 5-simplex has 60 vertices, 240 edges, 290 faces (200 triangles and 90 squares), 135 cells (30 tetrahedra, 30 octahedra, 15 cuboctahedra and 60 triangular prisms), and 27 4-faces (6 cantellated 5-cell, 6 rectified 5-cells, and 15 tetrahedral prisms).

Alternate names

Coordinates

The vertices of the cantellated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,1,2) or of (0,1,1,2,2,2). These represent positive orthant facets of the cantellated hexacross and bicantellated hexeract respectively.

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [5]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [3]

Bicantellated 5-simplex

Bicantellated 5-simplex
Type Uniform 5-polytope
Schläfli symbol 2rr{3,3,3,3} = r\left\{\begin{array}{l}3, 3\\3 ,3\end{array}\right\}
Coxeter-Dynkin diagram
or
4-faces 32 12 t02{3,3,3}
20 {3}x{3}
Cells 180 30 t1{3,3}
120 {}x{3}
30 t02{3,3}
Faces 420 240 {3}
180 {4}
Edges 360
Vertices 90
Vertex figure
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal

Alternate names

Coordinates

The coordinates can be made in 6-space, as 90 permutations of:

(0,0,1,1,2,2)

This construction exists as one of 64 orthant facets of the bicantellated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [[5]]=[10]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [[3]]=[6]

Cantitruncated 5-simplex

cantitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol tr{3,3,3,3} = t\left\{\begin{array}{l}3, 3, 3\\3\end{array}\right\}
Coxeter-Dynkin diagram
or
4-faces 27 6 t012{3,3,3}
6 t{3,3,3}
15 {}x{3,3}
Cells 135 15 t012{3,3}
30 t{3,3}
60 {}x{3}
30 {3,3}
Faces 290 120 {3}
80 {6}
90 {}x{}
Edges 300
Vertices 120
Vertex figure
Irr. 5-cell
Coxeter group A5 [3,3,3,3], order 720
Properties convex

Alternate names

Coordinates

The vertices of the cantitruncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,0,1,2,3) or of (0,1,2,3,3,3). These construction can be seen as facets of the cantitruncated 6-orthoplex or bicantitruncated 6-cube respectively.

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [5]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [3]

Bicantitruncated 5-simplex

Bicantitruncated 5-simplex
Type Uniform 5-polytope
Schläfli symbol 2tr{3,3,3,3} = t\left\{\begin{array}{l}3, 3\\3 ,3\end{array}\right\}
Coxeter-Dynkin diagram
or
4-faces 32 12 tr{3,3,3}
20 {3}x{3}
Cells 180 30 t{3,3}
120 {}x{3}
30 t{3,4}
Faces 420 240 {3}
180 {4}
Edges 450
Vertices 180
Vertex figure
Coxeter group A5×2, [[3,3,3,3]], order 1440
Properties convex, isogonal

Alternate names

Coordinates

The coordinates can be made in 6-space, as 180 permutations of:

(0,0,1,2,3,3)

This construction exists as one of 64 orthant facets of the bicantitruncated 6-orthoplex.

Images

orthographic projections
Ak
Coxeter plane
A5 A4
Graph
Dihedral symmetry [6] [[5]]=[10]
Ak
Coxeter plane
A3 A2
Graph
Dihedral symmetry [4] [[3]]=[6]

Related uniform 5-polytopes

The cantellated 5-simplex is one of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)

Notes

  1. Klitizing, (x3o3x3o3o - sarx)
  2. Klitizing, (o3x3o3x3o - sibrid)
  3. Klitizing, (x3x3x3o3o - garx)
  4. Klitizing, (o3x3x3x3o - gibrid)

References

External links

This article is issued from Wikipedia - version of the Wednesday, December 09, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.