Bursaphelenchus cocophilus

Red ring nematode
Scientific classification
Kingdom: Animalia
Phylum: Nematoda
Class: Secernentea
Subclass: Tylenchia
Order: Aphelenchida
Superfamily: Aphelenchoidoidea
Family: Parasitaphelenchidae
Subfamily: Bursaphelenchinae
Genus: Bursaphelenchus
Species: B. cocophilus
Binomial name
Bursaphelenchus cocophilus

The red ring disease of coconuts and African oil palms is caused by the nematode Bursaphelenchus cocophilus. It is also identified in literature with an alternative scientific name Rhadinaphelenchus cocophilus. The common name, the red ring nematode, is derived from its distinguishing symptom.

Significance

This nematode can cause losses up to 80%, however, the losses typically range from 10-15% on coconut palms and oil palms.[1]

Distribution

This nematode is distributed in Central and South America, and some of the islands in the Caribbean.[2]

Identification

The distinguishing characteristics of this nematode are a well-developed metacorpus from J2 through adult, a short stylet 11-15 um in adults, adults typically 1mm in length. Females have the vulva located two-thirds body length and have a vulval flap. Females have a long post uterine sac and a rounded tail. Males have seven papillae in the tail region, distinct spicules, and bursa shaped as a spade.[3]

Life cycle

The red ring nematode follows a typical plant parasitic life cycle, having 4 molts before becoming an adult. The whole life cycle lasts approximately ten days. The survival stage is the J3.[4] The dissemination of this nematode depends on its relationship with its vector.

Insect vector relationship

The vector, Rhynchophorus palmarum (the South American palm weevil), carries the J3 stage to healthy palms. Female weevils are internally infested around the oviducts, when they lay their eggs in the palm they also disseminate the nematode.[5]

Host-parasite relationship

The symptoms produced by this nematode are chlorosis beginning in the oldest leaves and a distinct red/brownish ring in the trunk of the tree.

Management

To manage this disease scouting is the most important aspect; early detection of infected trees may save plantations. If an infected tree is found it must be removed, treated with herbicide and cut down. Leaving the stump behind can lead to vector reproduction and spread the nematode. Trapping the vector is another strategy, reducing the disease incidence from 10% to 1%.[6]

Footnotes

  1. Esser and Meredith 1987
  2. CAB 1999
  3. Goodey 1960
  4. Blair and Darling 1968
  5. Chinchilla 1991
  6. Oehlschlager 2002

References

External links


This article is issued from Wikipedia - version of the Thursday, April 30, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.