Bolzano–Weierstrass theorem

In mathematics, specifically in real analysis, the Bolzano–Weierstrass theorem, named after Bernard Bolzano and Karl Weierstrass, is a fundamental result about convergence in a finite-dimensional Euclidean space Rn. The theorem states that each bounded sequence in Rn has a convergent subsequence.[1] An equivalent formulation is that a subset of Rn is sequentially compact if and only if it is closed and bounded.[2] The theorem is sometimes called the sequential compactness theorem.[3]

Proof

First we prove the theorem when n = 1, in which case the ordering on R can be put to good use. Indeed, we have the following result.

Lemma: Every sequence {xn} in R has a monotone subsequence.

Proof: Let us call a positive integer n a "peak of the sequence" if m > n implies xn > xm i.e., if xn is greater than every subsequent term in the sequence. Suppose first that the sequence has infinitely many peaks, n1 < n2 < n3 <  < nj < …. Then the subsequence  \{x_{n_j}\} corresponding to these peaks is monotonically decreasing, and we are done. So suppose now that there are only finitely many peaks, let N be the last peak and n1 = N + 1. Then n1 is not a peak, since n1 > N, which implies the existence of an n2 > n1 with  x_{n_2} \geq x_{n_1}. Again, n2 > N is not a peak, hence there is n3 > n2 with x_{n_3} \geq x_{n_2}. Repeating this process leads to an infinite non-decreasing subsequence  x_{n_1} \leq x_{n_2} \leq x_{n_3} \leq \ldots, as desired.[4]

Now suppose we have a bounded sequence in R; by the Lemma there exists a monotone subsequence, necessarily bounded. It follows from the monotone convergence theorem that this subsequence must converge.

Finally, the general case can be easily reduced to the case of n = 1 as follows: given a bounded sequence in Rn, the sequence of first coordinates is a bounded real sequence, hence has a convergent subsequence. We can then extract a subsubsequence on which the second coordinates converge, and so on, until in the end we have passed from the original sequence to a subsequence n times which is still a subsequence of the original sequence on which each coordinate sequence converges, hence the subsequence itself is convergent.

Alternative proof

There is also an alternative proof of the Bolzano-Weierstrass theorem using nested intervals. We start with a bounded sequence (x_n):

Because we half the length of an interval at each step the limit of the interval's length is zero. Thus there is a number x which is in each Interval I_n. Now we show, that x is an accumalation point of (x_n).

Take a neighbourhood U of x. Because the length of the intervals converges to zero, there is an Interval I_N which is a subset of U. Because I_N contains by construction infinitely many members of (x_n) and I_N\subseteq U, also U contains infinitely many members of (x_n). This proves, that x is an accumulation point of (x_n). Thus, there is a subsequence of (x_n) which converges to x.

Sequential compactness in Euclidean spaces

Suppose A is a subset of Rn with the property that every sequence in A has a subsequence converging to an element of A. Then A must be bounded, since otherwise there exists a sequence xm in A with ||xm|| ≥ m for all m, and then every subsequence is unbounded and therefore not convergent. Moreover, A must be closed, since from a noninterior point x in the complement of A one can build an A-valued sequence converging to x. Thus the subsets A of Rn for which every sequence in A has a subsequence converging to an element of A  i.e., the subsets which are sequentially compact in the subspace topology  are precisely the closed and bounded sets.

This form of the theorem makes especially clear the analogy to the Heine–Borel theorem, which asserts that a subset of Rn is compact if and only if it is closed and bounded. In fact, general topology tells us that a metrizable space is compact if and only if it is sequentially compact, so that the Bolzano–Weierstrass and Heine–Borel theorems are essentially the same.

History

The Bolzano–Weierstrass theorem is named after mathematicians Bernard Bolzano and Karl Weierstrass. It was actually first proved by Bolzano in 1817 as a lemma in the proof of the intermediate value theorem. Some fifty years later the result was identified as significant in its own right, and proved again by Weierstrass. It has since become an essential theorem of analysis.

Application to economics

There are different important equilibrium concepts in economics, the proofs of the existence of which often require variations of the Bolzano–Weierstrass theorem. One example is the existence of a Pareto efficient allocation. An allocation is a matrix of consumption bundles for agents in an economy, and an allocation is Pareto efficient if no change can be made to it which makes no agent worse off and at least one agent better off (here rows of the allocation matrix must be rankable by a preference relation). The Bolzano–Weierstrass theorem allows one to prove that if the set of allocations is compact and non-empty, then the system has a Pareto-efficient allocation.

See also

Notes

  1. Bartle and Sherbert 2000, p. 78 (for R).
  2. Fitzpatrick 2006, p. 52 (for R), p. 300 (for Rn).
  3. Fitzpatrick 2006, p. xiv.
  4. Bartle and Sherbert 2000, pp. 78-79.

References

External links

This article is issued from Wikipedia - version of the Friday, February 05, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.