Bacillus thuringiensis israelensis

An 'Ovitrap, a tool for the collection of eggs from tiger mosquitoes: In this case, an ovitrap type used for the monitoring of the Asian tiger mosquito Aedes albopictus in the Swiss canton of Ticino. The presence of the mosquitoes is detected through the eggs they lay on the wooden paddle or from larvae that hatch from these eggs in the laboratory. The brown granules in the water are a Bacillus thuringiensis israelensis preparation that will kill mosquito larvae that hatch in the ovitrap. Ovitraps are also used to monitor the yellow fever mosquito Aedes aegypti.

Bacillus thuringiensis serotype israelensis (Bti) is a group of bacteria used as biological control agents for larvae stages of certain dipterans. Bti produces toxins which are effective in killing various species of mosquitoes, fungus gnats, and blackflies, while having almost no effect on other organisms. Indeed, this is one of the major advantages of B. thuringiensis products in general is that they are thought to affect few nontarget species.

Bti strains possess the pBtoxis plasmid which encodes numerous Cry and Cyt toxins, including Cry4, Cry10, Cry11, Cyt1, and Cyt2. The crystal aggregation which these toxins form contains at least four major toxic components, but the extent to which each Cry and Cyt protein is represented is not known and likely to vary with strain and formulation. Both Cry and Cyt proteins are pore-forming toxins; they lyse midgut epithelial cells by inserting into the target cell membrane and forming pores.[1]

Commercial formulations include "Mosquito Dunks"/"Mosquito Bits". It is also available in bulk liquid or granular formulations for commercial and public agency use.

Long name

Bacillus thuringiensis subspecies israelensis strain EG2215

Patent information

United States patent: 4,166,112
Inventor: Goldberg; Leonard J. 1979

See also

References

  1. Bravo A, Gill S, Soberón M (2007). "Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control". Toxicon 49 (4): 423–35. doi:10.1016/j.toxicon.2006.11.022. PMC 1857359. PMID 17198720.

External links

This article is issued from Wikipedia - version of the Tuesday, October 21, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.