Arens–Fort space

In mathematics, the Arens–Fort space is a special example in the theory of topological spaces, named for Richard Friederich Arens and M. K. Fort, Jr.

Let X be a set of ordered pairs of non-negative integers (m, n). A subset U of X is open if and only if:

In other words, an open set is only "allowed" to contain (0, 0) if only a finite number of its columns contain significant gaps. By a significant gap in a column we mean the omission of an infinite number of points.

It is

It is not:

See also

References

This article is issued from Wikipedia - version of the Saturday, April 20, 2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.