Aperiodic semigroup
In mathematics, an aperiodic semigroup is a semigroup S such that every element x ∈ S is aperiodic, that is, for each x there exists a positive integer n such that xn = xn + 1.[1] An aperiodic monoid is an aperiodic semigroup which is a monoid.
Finite aperiodic semigroups
A finite semigroup is aperiodic if and only if it contains no nontrivial subgroups, so a synonym used (only?) in such contexts is group-free semigroup. In terms of Green's relations, a finite semigroup is aperiodic if and only if its H-relation is trivial. These two characterizations extend to group-bound semigroups.
A celebrated result of algebraic automata theory due to Marcel-Paul Schützenberger asserts that a language is star-free if and only if its syntactic monoid is finite and aperiodic.[2]
A consequence of the Krohn–Rhodes theorem is that every finite aperiodic monoid divides a wreath product of copies of the three-element flip-flop monoid, consisting of an identity element and two right zeros. The two-sided Krohn–Rhodes theorem alternatively characterizes finite aperiodic monoids as divisors of iterated block products of copies of the two-element semilattice.
See also
References
- ↑ Kilp, Mati; Knauer, Ulrich; Mikhalev, Alexander V. (2000). Monoids, Acts and Categories: With Applications to Wreath Products and Graphs. A Handbook for Students and Researchers. De Gruyter Expositions in Mathematics 29. Walter de Gruyter. p. 29. ISBN 3110812908. Zbl 0945.20036.
- ↑ Schützenberger, Marcel-Paul, "On finite monoids having only trivial subgroups," Information and Control, Vol 8 No. 2, pp. 190–194, 1965.
- Straubing, Howard (1994). Finite automata, formal logic, and circuit complexity. Progress in Theoretical Computer Science. Basel: Birkhäuser. ISBN 3-7643-3719-2. Zbl 0816.68086.