Flying and gliding animals

Greylag geese (Anser anser). Birds are one of only four taxonomic groups to have evolved powered flight.

A number of animals have evolved aerial locomotion, either by powered flight or by gliding. Flying and gliding animals have evolved separately many times, without any single ancestor. Flight has evolved at least four times, in the insects, pterosaurs, birds, and bats. Gliding has evolved on many more occasions. Usually the development is to aid canopy animals in getting from tree to tree, although there are other possibilities. Gliding, in particular, has evolved among rainforest animals, especially in the rainforests in Asia (most especially Borneo) where the trees are tall and widely spaced. Several species of aquatic animals, and a few amphibians have also evolved to acquire this gliding flight ability, typically as a means of evading predators.

Types of aerial locomotion

Animal aerial locomotion can be divided into two categories—powered and unpowered. In unpowered modes of locomotion, the animal uses on aerodynamics forces exerted on the body due to wind or falling through the air. In powered flight, the animal uses muscular power to generate aerodynamic forces. Animals using unpowered aerial locomotion cannot maintain altitude and speed due to unopposed drag, while animals using powered flight can maintain steady, level flight as long as their muscles are capable of doing so.

Unpowered aerial locomotion

These modes of locomotion typically require an animal start from a raised location, converting that potential energy into kinetic energy and using aerodynamic forces to control trajectory and angle of descent. Energy is continually lost to drag without being replaced, thus these methods of locomotion have limited range and duration.

Powered flight

Powered flight has evolved only 4 times (birds, bats, pterosaurs, and insects), and uses muscular power to generate aerodynamic forces and replace energy lost to drag.

Externally powered aerial locomotion

Ballooning and soaring are not powered by muscle, but rather by external aerodynamic sources of energy: the wind and rising thermals, respectively. Both can continue as long as the source of external power is present. Soaring is typically only seen in species capable of powered flight, as it requires extremely large wings.

Many species will use multiple of these modes at various times; a hawk will use powered flight to rise, then soar on thermals, then descend via free-fall to catch its prey.

Evolution and ecology of aerial locomotion

Gliding and parachuting

While gliding may be a precursor to some forms of powered flight, gliding has some ecological advantages of its own. Gliding is a very energy-efficient way of travelling from tree to tree. An argument made is that many gliding animals eat low energy foods such as leaves and are restricted to gliding because of this, whereas flying animals eat more high energy foods such as fruits, nectar, and insects.[1] In contrast to flight, gliding has evolved independently many times (more than a dozen times among extant vertebrates), however these groups have not radiated nearly as much as have groups of flying animals.

One point of interest is the distribution of gliding animals. Most gliding animals live in rain forests (although a few gliding squirrels live in northern Asian and North American forests). Many gliding animals are found in Southeast Asia and some in Africa, whereas only a very few gliding vertebrates are found in South America (a handful of hylid frogs, flying frogs), India, or New Guinea (and none in Madagascar) despite seemingly suitable rain forest habitat.[2] However, many more animals in South America have prehensile tails than in Africa and Southeast Asia. It has been argued that gliding animals dominate in Southeast Asia as the forests are less dense than in South America. In dense forest there is not room to glide, but a prehensile tail is very useful for moving from tree to tree. Also South American rainforests tend to have more lianas as there are fewer large animals to eat them compared to Africa and Asia; these lianas would aid climbers but obstruct gliders.[1] Curiously, Australia contains many mammals with prehensile tails and also many mammals which can glide; in fact, all Australian mammalian gliders have tails that are prehensile to an extent. Other theories for the higher number of gliding animals in Southeast Asian forests include the fact that the dominant canopy trees in such forests (mostly dipterocarp family trees) are taller than the canopy trees in other forests (gliders can glide further, from higher starting points, and travel further in such forests, giving them a competitive advantage) and the lower abundance of insect and small vertebrate prey for carnivorous animals (such as lizards) in such Asian forests (gliding predators may search wide areas for prey and mates more efficiently).[2]

Analogous flying adaptions:
1. pterosaur (Pterosauria)
2. bat (Chiroptera)
3. bird (Aves)

Because small animals necessarily have higher surface to volume ratios than larger species of similar form, aerodynamic forces have a greater effect on them, resulting in much lower terminal velocity in free fall and amplifying the effects of even small alterations to body surface area. These small changes provide incremental benefits towards further development of gliding.

Powered flight

Powered flight has evolved only four times—birds, bats, pterosaurs, and insects. In contrast to gliding, which has evolved more frequently but typically gives rise to only a handful of species, all three extant groups of powered flyers have a huge number of species, suggesting that flight is a very successful strategy once evolved. Bats, after rodents, have the most species of any mammalian order, about 20% of all mammalian species.[3] Birds have the most species of any class of terrestrial vertebrates. Finally, insects have more species than all other animal groups combined.

The evolution of flight is one of the most striking and demanding in animal evolution, and has attracted the attention of many prominent scientists and generated many theories. Additionally, because flying animals tend to be small and have a low mass (both of which increase the surface area to mass ratio), they tend to fossilize infrequently and poorly compared to the larger, heavier-boned terrestrial species they share habitat with. Fossils of flying animals tend to be confined to exceptional fossil deposits formed under highly specific circumstances, resulting in a generally poor fossil record, and a particular paucity of transitional forms. Furthermore, as fossils do not preserve behavior or muscle, it can be difficult to discriminate between a poor flyer and a good glider.

Insects were the first to evolve flight, approximately 350 million years ago. The developmental origin of the insect wing remains in dispute, as does the purpose prior to true flight. One suggestion is that wings initially were used to catch the wind for small insects that live on the surface of the water, while another is that they functioned in parachuting, then gliding, then flight for originally arboreal insects.

Pterosaurs were the next to evolve flight, approximately 200 million years ago. These reptiles were close relatives of the dinosaurs (and sometimes mistakenly considered dinosaurs by laymen), and reached enormous sizes, with some of the last forms being the largest flying animals ever to inhabit the Earth, having wingspans of over 30 feet. However, they spanned a large range of sizes, down to a 10-inch wingspan in Nemicolopterus.

Birds have an extensive fossil record, along with many forms documenting both their evolution from small theropod dinosaurs and the numerous bird-like forms of theropod which did not survive the mass extinction at the end of the Cretaceous. Indeed, Archaeopteryx is arguably the most famous transitional fossil in the world, both due to its mix of reptilian and avian anatomy and the luck of being discovered only two years after Darwin's publication of On the Origin of Species. However, the ecology and this transition is considerably more contentious, with various scientists supporting either a "trees down" origin (in which an arboreal ancestor evolved gliding, then flight) or a "ground up" origin (in which a fast-running terrestrial ancestor used wings for a speed boost and to help catch prey).

Bats are the most recent to evolve (about 60 million years ago), most likely from a gliding ancestor, though their poor fossil record has hindered more detailed study.

Only a few animals are known to have specialised in soaring: the larger of the extinct pterosaurs, and some large birds. Powered flight is very energetically expensive for large animals, but for soaring their size is an advantage, as it allows them a low wing loading, that is a large wing areas relative to their weight, which maximizes lift.[4] Soaring is very energetically efficient.

Biomechanics of aerial locomotion

Gliding and parachuting

During a free-fall with no aerodynamic forces, the object accelerates due to gravity, resulting in increasing velocity as the object descends. During parachuting, animals use the aerodynamic forces on their body to counteract the force or gravity. Any object moving through air experiences a drag force that is proportion to surface area and to velocity squared, and this force will partially counter the force of gravity, slowing the animal's descent to a safer speed. If this drag is oriented at an angle to the vertical, the animal's trajectory will gradually become more horizontal, and it will cover horizontal as well as vertical distance. Smaller adjustments can allow turning or other maneuvers. This can allow a parachuting animal to move from a high location on one tree to a lower location on another tree nearby.

During gliding, lift plays an increased role. Like drag, lift is proportional to velocity squared. Gliding animals will typically leap or drop from high locations such as trees, just as in parachuting, and as gravitational acceleration increases their speed, the aerodynamic forces also increase. Because the animal can utilize lift and drag to generate greater aerodynamic force, it can glide at a shallower angle than parachuting animals, allowing it to cover greater horizontal distance in the same loss of altitude, and reach trees further away.

Powered flight

Unlike most air vehicles, in which the objects that generate lift (wings) and thrust (engine/propeller) are separate and the wings remained fixed, flying animals use their wings to generate both lift and thrust by moving them relative to the body. This has made the flight of organisms considerably harder to understand than that of vehicles, as it involves varying speeds, angles, orientations, areas, and flow patterns over the wings.

A bird or bat flying through the air at a constant speed moves its wings up and down (usually with some fore-aft movement as well). Because the animal is in motion, there is some airflow relative to its body which, combined with the velocity of with wings, generates a faster airflow moving over the wing. This will generate lift force vector pointing forwards and upwards, and a drag force vector pointing rearwards and upwards. The upwards components of these counteract gravity, keeping the body in the air, while the forward component provides thrust to counteract both the drag from the wing and from the body as a whole. Pterosaur flight likely worked in a similar manner, though no living pterosaurs remain for study.

Insect flight is considerably different, due to their small size, rigid wings, and other anatomical differences. Turbulence and vortices play a much larger role in insect flight, making it even more complex and difficult to study than the flight of vertebrates.[5] The UCMP exhibit on vertebrate flight contains a broad introduction to the biomechanics of flying and gliding vertebrates.[4]

Limits and extremes

Flying/soaring

Gliding/parachuting

Animals which parachute, glide, or fly (living)

Invertebrates

Arthropods

A bee in flight.

Molluscs

Vertebrates

Fish

Band-winged flying fish. Note the enlarged pectoral fins.

Amphibians

The underside of Kuhl's flying gecko Ptychozoon kuhli. Note the gliding adaptations: flaps of skin on the legs, feet, sides of the body, and on the sides of the head.

Reptiles

Birds

Main article: Bird flight
Birds are a successful group of flying vertebrate.

Mammals

Townsends's big-eared bat, (Corynorhinus townsendii) displaying the "hand wing"

Animals which parachute, glide, or fly (extinct)

Pterosaurs included the largest known flying animals

Reptiles

Non-avian dinosaurs

Fish

Mammals

See also

References

  1. 1 2 "Life in the Rainforest". Archived from the original on 2006-07-09. Retrieved 15 April 2006.
  2. 1 2 Corlett, Richard T.; Primack, Richard B. (2011). Tropical rain forests : an ecological and biogeographical comparison (2nd ed.). Chichester: Wiley-Blackwell. pp. 197, 200. ISBN 978-1444332551.
  3. Simmons, N.B.; D.E. Wilson, D.C. Reeder (2005). Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore, MD: Johns Hopkins University Press. pp. 312–529.
  4. 1 2 "Vertebrate Flight". Retrieved 15 April 2006.
  5. Wang, Shizhao; Xing Zhang, Guowei He, Tianshu Liu (Sep 2013). "Lift Enhancement by Dynamically Changing Wingspan in Forward Flapping Flight". ArXiv e-prints. Retrieved 24 September 2013.
  6. Fillipone
  7. Yanoviak, SP; Kaspari, M; Dudley, R (2009). "Gliding hexapods and the origins of insect aerial behaviour". Biol Lett 5 (4): 510–2. doi:10.1098/rsbl.2009.0029. PMC 2781901. PMID 19324632.
  8. Yanoviak, S. P.; Dudley, R.; Kaspari, M. (2005). "Directed aerial descent in canopy ants". Nature 433 (7026): 624–626. doi:10.1038/nature03254. PMID 15703745.
  9. "Scientist Discovers Rainforest Ants That Glide". Newswise. Retrieved 15 April 2006.
  10. Gliding ants - introduction
  11. Packard, A. 1972. Cephalopods and fish: the limits of convergence. Biol. Rev. 47: 241-307
  12. Silvia Maciá, Michael P. Robinson, Paul Craze, Robert Dalton, and James D. Thomas. New observations on airborne jet propulsion (flight) in squid, with a review of previous reports. J. Mollus. Stud. 2004 70: 297-299
  13. 1 2 Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press.
  14. BBC NEWS | Science/Nature | Fast flying fish glides by ferry
  15. 1 2 "Vertebrate Flight: gliding and parachuting". Retrieved 15 April 2006.
  16. Flying fish perform as well as some birds - Los Angeles Times
  17. Marshall, N.B. (1965) The Life of Fishes. London: Weidenfield and Nicolson. 402 pp.
  18. Berra, Tim M. (2001). Freshwater Fish Distribution. San Diego: Academic Press. ISBN 0-12-093156-7
  19. http://jeb.biologists.org/content/204/16/2817.full.pdf
  20. http://www.jstor.org/stable/10.2307/2409604
  21. http://www.bioone.org/doi/abs/10.1670/08-025R1.1
  22. Tiny lizard falls like a feather
  23. 1 2 3 Ptychozoon: the geckos that glide with flaps and fringes (gekkotans part VIII) – Tetrapod Zoology
  24. Gliding Possums Environment, New South Wales Government
  25. Cronin, Leonard "Key Guide to Australian Mammals", published by Reed Books Pty. Ltd., Sydney, 1991 ISBN 0-7301-0355-2
  26. van der Beld, John "Nature of Australia A portrait of the island continent", co-published by William Collins Pty. Ltd. and ABC Enterprises for the Australian Broadcasting Corporation, Sydney, 1988 (revised edition 1992), ISBN 0-7333-0241-6
  27. Russell, Rupert "Spotlight on Possums", published by University of Queensland Press, St. Lucia, Queensland, 1980, ISBN 0-7022-1478-7
  28. Troughton, Ellis "Furred Animals of Australia", published by Angus and Robertson (Publishers) Pty. Ltd, Sydney, in 1941 (revised edition 1973), ISBN 0-207-12256-3
  29. Morcombe, Michael & Irene "Mammals of Australia", published by Australian Universities Press Pty. Ltd, Sydney, 1974, ISBN 0-7249-0017-9
  30. Ride, W. D. L. "A Guide to the Native Mammals of Australia", published by Oxford University Press, Melbourne, 1970, ISBN 0 19 550252 3
  31. Serventy, Vincent "Wildlife of Australia", published by Thomas Nelson (Australia) Ltd., Melbourne, 1968 (revised edition 1977), ISBN 0-17-005168-4
  32. Serventy, Vincent (editor) "Australia's Wildlife Heritage", published by Paul Hamlyn Pty. Ltd., Sydney, 1975
  33. Myers, Phil. "Family Pseudocheiridae". Retrieved 15 April 2006.
  34. Tudge, Colin (2000). The Variety of Life. Oxford University Press. ISBN 0-19-860426-2.
  35. 1 2 Darren Naish: Tetrapod Zoology: Literally, flying lemurs (and not dermopterans)
  36. Literally, flying lemurs (and not dermopterans) – Tetrapod Zoology
  37. Ancient Gliding Reptile Discovered | LiveScience
  38. Sharov, Alexei A. "Wings on Hind Legs". Retrieved 15 April 2006.
  39. Stauth, David (2000). "Ancient feathered animal challenges dinosaur-bird link". Retrieved 15 April 2006.
  40. "Controversial Fossil Claimed to Sink Dinosaur-Bird Link". Archived from the original on 2006-06-30. Retrieved 15 April 2006.
  41. Dinosaur Profs Worlds Apart on Link to Birds
  42. BBC NEWS | Science/Nature | Earliest flying mammal discovered
  43. Gaetano, L.C.; Rougier, G.W. (2011). "New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny". Journal of Vertebrate Paleontology 31 (4): 829–843. doi:10.1080/02724634.2011.589877.
  44. Simmons, N.B.; Seymour, K. L. Habersetzer, J. Gunnell, G. F. (February 14, 2008). "Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation". Nature 451 (7180): 818–822. doi:10.1038/nature06549. PMID 18270539.
  45. Szalay, FS, Sargis, EJ, and Stafford, BJ (2000) Small marsupial glider from the Paleocene of Itaboraí, Brazil. Journal of Vertebrate Paleontology 20 Supplement: 73A. Presented at the Meeting of the Society of Vertebrate Paleontology.

Further reading

External links

Wikimedia Commons has media related to Animal flight.
This article is issued from Wikipedia - version of the Monday, February 15, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.