András Hajnal

András Hajnal (born May 13, 1931) is an emeritus professor of mathematics at Rutgers University[1] and a member of the Hungarian Academy of Sciences[2] known for his work in set theory and combinatorics.

Biography

Hajnal was born on 13 May 1931,[3] in Budapest, Hungary.

He received his university diploma (M.Sc. degree) in 1953 from the Eötvös Loránd University,[4] his Candidate of Mathematical Science degree (roughly equivalent to Ph.D.) in 1957, under the supervision of László Kalmár,[5] and his Doctor of Mathematical Science degree in 1962. From 1956 to 1995 he was a faculty member at the Eötvös Loránd University; in 1994, he moved to Rutgers University to become the director of DIMACS, and he remained there as a professor until his retirement in 2004.[3] He became a member of the Hungarian Academy of Sciences in 1982, and directed its mathematical institute from 1982 to 1992.[3] He was general secretary of the János Bolyai Mathematical Society from 1980 to 1990, and president of the society from 1990 to 1994.[3] Since 1981, he has been an advisory editor of the journal Combinatorica.

In all his life, Hajnal has been an avid chess player.[6]

Hajnal is the father of Peter Hajnal, the co-dean of the European College of Liberal Arts.

Research and publications

Hajnal is the author of over 150 publications.[7] Among the many co-authors of Paul Erdős, he has the second largest number of joint papers, 56.[8] With Peter Hamburger, he wrote a textbook, Set Theory (Cambridge University Press, 1999, ISBN 0-521-59667-X). Some of his more well-cited research papers[9] include

Other selected results include:

This was the result which initiated Shelah's pcf theory.

Awards and honors

In 1992, Hajnal was awarded the Officer's Cross of the Order of the Republic of Hungary.[3] In 1999, a conference in honor of his 70th birthday was held at DIMACS,[23] and a second conference honoring the 70th birthdays of both Hajnal and Vera Sós was held in 2001 in Budapest.[24] Hajnal became a fellow of the American Mathematical Society[25] in 2012.

References

  1. Rutgers University Department of Mathematics – Emeritus Faculty.
  2. Hungarian Academy of Sciences, Section for Mathematics.
  3. 1 2 3 4 5 Curriculum vitae.
  4. A halmazelmélet huszadik századi "Hajnal A", M. Streho's interview with A. H., Magyar Tudomány, 2001.
  5. Andras Hajnal at the Mathematics Genealogy Project. The 1957 date is from Hajnal's cv; the mathematics genealogy site lists the date of Hajnal's Ph.D. as 1956.
  6. The announcement for the 2001 conference in honor of Hajnal and Sós calls him “the great chess player”; the conference included a blitz chess tournament in his honor.
  7. List of publications from Hajnal's web site.
  8. List of collaborators of Erdős by number of joint papers, from the Erdős number project web site.
  9. According to citation counts from Google scholar, retrieved March 1, 2009.
  10. Hajnal, A.; Maass, W.; Pudlak, P.; Szegedy, M.; Turán, G. (1987), "Threshold circuits of bounded depth", Proc. 28th Symp. Foundations of Computer Science (FOCS 1987), pp. 99–110, doi:10.1109/SFCS.1987.59.
  11. Hajnal, A.; Szemerédi, E. (1970), "Proof of a conjecture of P. Erdős", Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred, 1969), North-Holland, pp. 601–623, MR 0297607.
  12. Catlin, Paul A. (1980), "On the Hajnal–Szemerédi theorem on disjoint cliques", Utilitas Mathematica 17: 163–177, MR 583138; Fischer, Eldar (1999), "Variants of the Hajnal–Szemerédi theorem", Journal of Graph Theory 31 (4): 275–282, doi:10.1002/(SICI)1097-0118(199908)31:4<275::AID-JGT2>3.0.CO;2-F, MR 1698745; Kierstead, H. A.; Kostochka, A. V. (2008), "A short proof of the Hajnal–Szemerédi theorem on equitable colouring", Combinatorics, Probability and Computing 17 (2): 265–270, doi:10.1017/S0963548307008619, MR 2396352; Martin, Ryan; Szemerédi, Endre (2008), "Quadripartite version of the Hajnal–Szemerédi theorem", Discrete Mathematics 308 (19): 4337–4360, doi:10.1016/j.disc.2007.08.019, MR 2433861.
  13. Erdős, P.; Hajnal, A.; Moon, J. W. (1964), "A problem in graph theory", American Mathematical Monthly (Mathematical Association of America) 71 (10): 1107–1110, doi:10.2307/2311408, JSTOR 2311408, MR 0170339.
  14. Erdős, P.; Hajnal, A. (1966), "On chromatic number of graphs and set-systems", Acta Mathematica Hungarica 17 (1–2): 61–99, doi:10.1007/BF02020444, MR 0193025.
  15. Hajnal, A. (1961), "On a consistency theorem connected with the generalized continuum problem", Acta Math. Acad. Sci. Hungar 12 (3–4): 321–376, doi:10.1007/BF02023921, MR 0150046.
  16. Hajnal, A. (1961/1962), "Proof of a conjecture of S. Ruziewicz", Fund. Math. 50: 123–128, MR 0131986 Check date values in: |date= (help).
  17. Hajnal, A. (1985), "The chromatic number of the product of two ℵ1 chromatic graphs can be countable", Combinatorica 5 (2): 137–140, doi:10.1007/BF02579376, MR 0815579..
  18. P. Erdős, A. Hajnal: On a property of families of sets, Acta Math. Acad. Sci. Hungar., 12(1961), 87123.
  19. Galvin, F.; Hajnal, A. (1975), "Inequalities for cardinal powers", Annals of Mathematics (2) 101 (3): 491–498, doi:10.2307/1970936, JSTOR 1970936.
  20. Baumgartner, J.; Hajnal, A. (1973), "A proof (involving Martin's axiom) of a partition relation", Polska Akademia Nauk. Fundamenta Mathematicae 78 (3): 193–203, MR 0319768. For additional results of Baumgartner and Hajnal on partition relations, see the following two papers: Baumgartner, J. E.; Hajnal, A. (1987), "A remark on partition relations for infinite ordinals with an application to finite combinatorics", Logic and combinatorics (Arcata, Calif., 1985), Contemp. Math. 65, Providence, RI: Amer. Math. Soc., pp. 157–167, MR 891246; Baumgartner, James E.; Hajnal, Andras (2001), "Polarized partition relations", The Journal of Symbolic Logic (Association for Symbolic Logic) 66 (2): 811–821, doi:10.2307/2695046, JSTOR 2695046, MR 1833480.
  21. M. Foreman, A. Hajnal: A partition relation for successors of large cardinals, Math. Ann., 325(2003), 583–623.
  22. A. Hajnal, I. Juhász: On hereditarily α-Lindelöf and hereditarily α-separable spaces, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 11(1968), 115124.
  23. Thomas, Simon, ed. (1999), Set Theory: The Hajnal Conference, October 15–17, 1999 DIMACS Center, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 58, American Mathematical Society, ISBN 978-0-8218-2786-4.
  24. Győri, Ervin; Katona, Gyula O. H.; Lovász, László, eds. (2006), More sets, graphs and numbers: a salute to Vera Sós and András Hajnal, Bolyai Society Mathematical Studies 15, Springer-Verlag, ISBN 978-3-540-32377-8.

External links

This article is issued from Wikipedia - version of the Tuesday, September 08, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.