Analysis Situs (paper)
This article is about the work by Henri Poincaré. For the book authored by Oswald Veblen, see Analysis Situs (book).
"Analysis Situs" is a seminal mathematics paper that Henri Poincaré published in 1895.[1] Poincaré published five supplements to the paper between 1899 and 1904.[2]
These papers provided the first systematic treatment of topology and revolutionized the subject by using algebraic structures to distinguish between non-homeomorphic topological spaces, founding the field of algebraic topology.[3] Poincaré's papers introduced the concepts of the fundamental group and simplicial homology, provided an early formulation of the Poincaré duality theorem, introduced the Euler–Poincaré characteristic for chain complexes, and raised several important conjectures, including one named after him which was later proven as a theorem.
Footnotes
- ↑ Poincaré 1895.
- ↑ Poincaré 1899; Poincaré 1900; Poincaré 1902a; Poincaré 1902b; Poincaré 1904.
- ↑ Dieudonné 1989: 15–35.
References
- Poincaré, Henri (1895). "Analysis situs". Journal de l'École Polytechnique. (2) 1: 1–123.
- Poincaré, Henri (1899). "Complément à l'Analysis Situs". Rendiconti del Circolo Matematico di Palermo 13: 285–343.
- Poincaré, Henri (1900). "Second complément à l'Analysis Situs". Proceedings of the London Mathematical Society 32: 277–308. doi:10.1112/plms/s1-32.1.277.
- Poincaré, Henri (1902a). "Sur certaines surfaces algébriques: troisième complément à l'Analysis Situs". Bulletin de la Société mathématique de France 30: 49–70.
- Poincaré, Henri (1902b). "Sur les cycles des surfaces algébriques: quatrième complément à l'Analysis Situs". Journal de mathématiques pures et appliquées. (5) 8: 169–214.
- Poincaré, Henri (1904). "Cinquième complément à l'analysis situs". Rendiconti del Circolo Matematico di Palermo 18: 45–110. doi:10.1007/bf03014091.
- Poincaré, Henri (2009). Papers on Topology: Analysis Situs and Its Five Supplements (PDF). Translated by John Stillwell.
- Dieudonné, Jean (1989). A History of Algebraic and Differential Topology 1900–1960. Boston: Birkhäuser. ISBN 0-8176-3388-X.
This article is issued from Wikipedia - version of the Tuesday, November 10, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.