Second-generation biofuels

Second generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of biomass. Biomass is a wide-ranging term meaning any source of organic carbon that is renewed rapidly as part of the carbon cycle. Biomass is derived from plant materials but can also include animal materials.

First generation biofuels are made from the sugars and vegetable oils found in arable crops, which can be easily extracted using conventional technology. In comparison, second generation biofuels are made from lignocellulosic biomass or woody crops, agricultural residues or waste, which makes it harder to extract the required fuel.

Introduction

Second generation biofuel technologies have been developed because first generation biofuels manufacture has important limitations.[1] First generation biofuel processes are useful but limited in most cases: there is a threshold above which they cannot produce enough biofuel without threatening food supplies and biodiversity. Many first generation biofuels depend on subsidies and are not cost competitive with existing fossil fuels such as oil, and some of them produce only limited greenhouse gas emissions savings. When taking emissions from production and transport into account, life-cycle assessment from first generation biofuels frequently approach those of traditional fossil fuels.[2]

Second generation biofuels can help solve these problems and can supply a larger proportion of global fuel supply sustainably, affordably, and with greater environmental benefits.

First generation bioethanol is produced by fermenting plant-derived sugars to ethanol, using a similar process to that used in beer and wine-making (see Ethanol fermentation). This requires the use of 'food' crops, such as sugar cane, corn, wheat, and sugar beet. These crops are required for food, so, if too much biofuel is made from them, food prices could rise and shortages might be experienced in some countries. Corn, wheat, and sugar beet can also require high agricultural inputs in the form of fertilizers, which limit the greenhouse gas reductions that can be achieved. Biodiesel produced by transesterification from rapeseed oil, palm oil, or other plant oils is also considered a first generation biofuel.

The goal of second generation biofuel processes is to extend the amount of biofuel that can be produced sustainably by using biomass consisting of the residual non-food parts of current crops, such as stems, leaves and husks that are left behind once the food crop has been extracted, as well as other crops that are not used for food purposes (non-food crops), such as switchgrass, grass, jatropha, whole crop maize, miscanthus and cereals that bear little grain, and also industry waste such as woodchips, skins and pulp from fruit pressing, etc.[3]

The problem that second generation biofuel processes are addressing is to extract useful feedstocks from this woody or fibrous biomass, where the useful sugars are locked in by lignin, hemicellulose and cellulose. All plants contain lignin, hemicellulose and cellulose. These are complex carbohydrates (molecules based on sugar). Lignocellulosic ethanol is made by freeing the sugar molecules from cellulose using enzymes, steam heating, or other pre-treatments. These sugars can then be fermented to produce ethanol in the same way as first generation bioethanol production. The by-product of this process is lignin. Lignin can be burned as a carbon neutral fuel to produce heat and power for the processing plant and possibly for surrounding homes and businesses. Thermochemical processes (liquefaction) in hydrothermal media can produce liquid oily products from a wide range of feedstock[4] that has a potential to replace or augment fuels. However, these liquid products fall short of diesel or biodiesel standards. Upgrading liquefaction products through one or many physical or chemical processes may improve properties for use as fuel.[5]

Second generation technology

The following subsections describe the main second generation routes currently under development.

Thermochemical routes

Carbon-based materials can be heated at high temperatures in the absence (pyrolysis) or presence of oxygen, air and/or steam (gasification).

These thermochemical processes both yield a combustible gas and a solid char. The gas can be fermented or chemically synthesised into a range of fuels, including ethanol, synthetic diesel or jet fuel.[6]

There are also lower temperature processes in the region of 150-374 °C, that produce sugars by decomposing the biomass in water with or without additives.

Gasification

Main article: Gasification

Gasification technologies are well established for conventional feedstocks such as coal and crude oil. Second generation gasification technologies include gasification of forest and agricultural residues, waste wood, energy crops and black liquor.[7] Output is normally syngas for further synthesis to e.g. Fischer-Tropsch products including diesel fuel, biomethanol, BioDME (dimethyl ether), gasoline via catalytic conversion of dimethyl ether, or biomethane (synthetic natural gas). Syngas can also be used in heat production and for generation of mechanical and electrical power via gas motors or gas turbines.

Pyrolysis

Main article: Pyrolysis

Pyrolysis is a well established technique for decomposition of organic material at elevated temperatures in the absence of oxygen. In second generation biofuels applications forest and agricultural residues, wood waste and energy crops can be used as feedstock to produce e.g. bio-oil for fuel oil applications. Bio-oil typically requires significant additional treatment to render it suitable as a refinery feedstock to replace crude oil.

Torrefaction

Main article: Torrefaction

Torrefaction is a form of pyrolysis at temperatures typically ranging between 200-320 °C. Feedstocks and output are the same as for pyrolysis.

Biochemical routes

Main article: Biochemistry

Chemical and biological processes that are currently used in other applications are being adapted for second generation biofuels. Biochemical processes typically employ pre-treatment to accelerate the hydrolysis process, which separates out the lignin, hemicellulose and cellulose. Once these ingredients are separated, the cellulose fractions can be fermented into alcohols.[6]

Feedstocks are energy crops, agricultural and forest residues, food industry and municipal biowaste and other biomass containing sugars. Products include alcohols (such as ethanol and butanol) and other hydrocarbons for transportation use.

Types of biofuel

The following second generation biofuels are under development, although most or all of these biofuels are synthesized from intermediary products such as syngas using methods that are identical in processes involving conventional feedstocks, first generation and second generation biofuels. The distinguishing feature is the technology involved in producing the intermediary product, rather than the ultimate off-take.

A process producing liquid fuels from gas (normally syngas) is called a Gas-to-Liquid (GtL) process.[8] When biomass is the source of the gas production the process is also referred to as Biomass-To-Liquids (BTL).

From syngas using catalysis

From syngas using Fischer-Tropsch

The Fischer-Tropsch (FT) process is a Gas-to-Liquid (GtL) process.[8] When biomass is the source of the gas production the process is also referred to as Biomass-To-Liquids (BTL).[19][20] A disadvantage of this process is the high energy investment for the FT synthesis and consequently, the process is not yet economic.

Biocatalysis

Other processes

Feedstocks

Second generation biofuel feedstocks include cereal and sugar crops, specifically grown energy crops, agricultural and municipal wastes, cultivated and waste oils, and algae.[23] Land use, existing biomass industries and relevant conversion technologies must be considered when evaluating suitability of developing biomass as feedstock for energy.[24]

Energy crops

Main article: Energy crop

Plants are made from lignin, hemicellulose and cellulose; second generation technology uses one, two or all of these components. Common lignocellulosic energy crops include wheat straw, Miscanthus, short rotation coppice poplar and willow. However, each offers different opportunities and no one crop can be considered 'best' or 'worst'.[25]

Municipal solid waste

Main article: Municipal solid waste

Municipal Solid Waste comprises a very large range of materials, and total waste arisings are increasing. In the UK, recycling initiatives decrease the proportion of waste going straight for disposal, and the level of recycling is increasing each year. However, there remains significant opportunities to convert this waste to fuel via gasification or pyrolysis.[26]

Green waste

Main article: Green waste

Green waste such as forest residues or garden or park waste[27] may be used to produce biofuel via different routes. Examples include Biogas captured from biodegradable green waste, and gasification or hydrolysis to syngas for further processing to biofuels via catalytic processes.

Black liquor

Main article: Black liquor

Black liquor, the spent cooking liquor from the kraft process that contains concentrated lignin and hemicellulose, may be gasified with very high conversion efficiency and greenhouse gas reduction potential[28] to produce syngas for further synthesis to e.g. biomethanol or BioDME.

Greenhouse gas emissions

Lignocellulosic biofuels reduces greenhouse gas emissions with 60-90% when compared with fossil petroleum (Börjesson.P. et al. 2013. Dagens och framtidens hållbara biodrivmedel), which is on par with the better of current biofuels of the first generation, where typical best values currently is 60-80%. In 2010, average savings of biofuels used within EU was 60% (Hamelinck.C. et al. 2013 Renewable energy progress and biofuels sustainability, Report for the European Commission). In 2013, 70% of the biofuels used in Sweden reduced emissions with 66% or higher. (Energimyndigheten 2014. Hållbara biodrivmedel och flytande biobränslen 2013).

Commercial development

An operating lignocellulosic ethanol production plant is located in Canada, run by Iogen Corporation.[29] The demonstration-scale plant produces around 700,000 litres of bioethanol each year. A commercial plant is under construction. Many further lignocellulosic ethanol plants have been proposed in North America and around the world.

The Swedish specialty cellulose mill Domsjö Fabriker in Örnsköldsvik, Sweden develops a biorefinery using Chemrec's black liquor gasification technology.[30] When commissioned in 2015 the biorefinery will produce 140,000 tons of biomethanol or 100,000 tons of BioDME per year, replacing 2% of Sweden's imports of diesel fuel for transportation purposes. In May 2012 it was revealed that Domsjö pulled out of the project, effectively killing the effort.

In the UK, companies like INEOS Bio and British Airways are developing advanced biofuel refineries, which are due to be built by 2013 and 2014 respectively. Under favourable economic conditions and strong improvements in policy support, NNFCC projections suggest advanced biofuels could meet up to 4.3 per cent of the UK's transport fuel by 2020 and save 3.2 million tonnes of CO2 each year, equivalent to taking nearly a million cars off the road.[25]

Helsinki, Finland, 1 February 2012 - UPM is to invest in a biorefinery producing biofuels from crude tall oil in Lappeenranta, Finland. The industrial scale investment is the first of its kind globally. The biorefinery will produce annually approximately 100,000 tonnes of advanced second generation biodiesel for transport. Construction of the biorefinery will begin in the summer of 2012 at UPM’s Kaukas mill site and be completed in 2014. UPM’s total investment will amount to approximately EUR 150 million.[31]

Calgary, Alberta, 30 April 2012 – Iogen Energy Corporation has agreed to a new plan with its joint owners Royal Dutch Shell and Iogen Corporation to refocus its strategy and activities. Shell continues to explore multiple pathways to find a commercial solution for the production of advanced biofuels on an industrial scale, but the company will NOT pursue the project it has had under development to build a larger scale cellulosic ethanol facility in southern Manitoba.[32]

"Drop-in" biofuels

So-called “drop-in” biofuels can be defined as “liquid bio-hydrocarbons that are functionally equivalent to petroleum fuels and are fully compatible with existing petroleum infrastructure”.[33]

There is considerable interest in developing advanced biofuels that can be readily integrated in the existing petroleum fuel infrastructure - i.e. “dropped-in” - particularly by sectors such as aviation, where there are no real alternatives to sustainably produced biofuels for low carbon emitting fuel sources. Drop-in biofuels by definition should be fully fungible and compatible with the large existing “petroleum-based” infrastructure.

According to a recent report published by the IEA Bioenergy Task 39, entitled “The potential and challenges of drop-in biofuels”, there are several ways to produce drop-in biofuels that are functionally equivalent to petroleum-derived transportation fuel blendstocks. These are discussed within three major sections of the full report and include:

A fourth category is also briefly described that includes “hybrid” thermochemical/biochemical technologies such as fermentation of synthesis gas and catalytic reforming of sugars/carbohydrates.

The report concludes by stating:

"Tremendous entrepreneurial activity to develop and commercialize drop-in biofuels from aquatic and terrestrial feedstocks has taken place over the past several years. However, despite these efforts, drop-in biofuels represent only a small percentage (around 2%) of global biofuel markets. (...) Due to the increased processing and resource requirements (e.g., hydrogen and catalysts) needed to make drop-in biofuels as compared to conventional biofuels, large scale production of cost-competitive drop-in biofuels is not expected to occur in the near to midterm. Rather, dedicated policies to promote development and commercialization of these fuels will be needed before they become significant contributors to global biofuels production. Currently, no policies (e.g., tax breaks, subsidies etc.) differentiate new, more fungible and infrastructure ready drop-in type biofuels from less infrastructure compatible oxygenated biofuels. (...) Thus, while tremendous technical progress has been made in developing and improving the various routes to drop-in fuels, supportive policies directed specifically towards the further development of drop-in biofuels are likely to be needed to ensure their future commercial success"[34]

See also

References

  1. Evans, G. "International Biofuels Strategy Project. Liquid Transport Biofuels - Technology Status Report, NNFCC 08-017", National Non-Food Crops Centre, 2008-04-14. Retrieved on 2011-02-16.
  2. "ADEME" (PDF). ADEME. Retrieved 22 September 2015.
  3. 1 2 Oliver R. Inderwildi, David A. King (2009). "Quo Vadis Biofuels". Energy & Environmental Science 2: 343. doi:10.1039/b822951c.
  4. Peterson, Andrew (9 July 2008). "Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies". Energy & Environmental Science 1 (1): 32–65. doi:10.1039/b810100k.
  5. Ramirez, Jerome; Brown, Richard; Rainey, Thomas (1 July 2015). "A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels". Energies 8: 6765–6794. doi:10.3390/en8076765.
  6. 1 2 National Non-Food Crops Centre. "NNFCC Newsletter – Issue 19. Advanced Biofuels", Retrieved on 2011-06-27
  7. National Non-Food Crops Centre. "Review of Technologies for Gasification of Biomass and Wastes, NNFCC 09-008", Retrieved on 2011-06-24
  8. 1 2 http://www.rsc.org/delivery/_ArticleLinking/DisplayHTMLArticleforfree.cfm?JournalCode=EE&Year=2009&ManuscriptID=b822951c&Iss=Advance_Article
  9. Refuel.com biomethanol
  10. Knight, R. "Green Gasoline from Wood Using Carbona Gasification and Topsoe TIGAS Processes." DOE Biotechnology Office (BETO) 2015 Project Peer Review (24 Mar 2015).
  11. Lu, Yongwu, Fei Yu, Jin Hu, and Jian Liu. "Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst." Applied Catalysis A: General (2012).
  12. 1 2 Quarderer, George J., Rex R. Stevens, Gene A. Cochran, and Craig B. Murchison. "Preparation of ethanol and higher alcohols from lower carbon number alcohols." U.S. Patent 4,825,013, issued April 25, 1989.
  13. Subramani, Velu; Gangwal, Santosh K.; "A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol", Energy and Fuels, 31 January 2008, web publication.
  14. Zaman, Sharif, and Kevin J. Smith. "A Review of Molybdenum Catalysts for Synthesis Gas Conversion to Alcohols: Catalysts, Mechanisms and Kinetics." Catalysis Reviews 54, no. 1 (2012): 41-132.
  15. News Release NR-2108, "Dow and NREL Partner to Convert Biomass to Ethanol and Other Chemical Building Blocks", July 16, 2008, downloaded from http://www.nrel.gov/news/press/2008/617.html on 19 February 2013.
  16. Glezakou, Vassiliki-Alexandra, John E. Jaffe, Roger Rousseau, Donghai Mei, Shawn M. Kathmann, Karl O. Albrecht, Michel J. Gray, and Mark A. Gerber. "The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C 2+ Oxygenates." Topics in Catalysis (2012): 1-6.
  17. "PowerEnergy.com". Retrieved 22 September 2015.
  18. "standard-alcohol". standard-alcohol. Retrieved 22 September 2015.
  19. Status And Perspectives of Biomass-To-Liquid Fuels in the European Union (PDF).
  20. Oliver R. Inderwildi, Stephen J. Jenkins, David A. King (2008). "Mechanistic Studies of Hydrocarbon Combustion and Synthesis on Noble Metals". Angewandte Chemie International Edition 47 (28): 5253–5. doi:10.1002/anie.200800685. PMID 18528839.
  21. and
  22. Refuel.com HTU diesel
  23. National Non-Food Crops Centre. "Pathways to UK Biofuels: A Guide to Existing and Future Options for Transport, NNFCC 10-035", Retrieved on 2011-06-27
  24. Kosinkova, Jana; Doshi, Amar; Maire, Juliette; Ristovski, Zoran; Brown, Richard; Rainey, Thomas (September 2015). "Measuring the regional availability of biomass for biofuels and the potential for microalgae". Renewable and Sustainable Energy Reviews 49: 1271–1285. doi:10.1016/j.rser.2015.04.084.
  25. 1 2 National Non-Food Crops Centre. "Advanced Biofuels: The Potential for a UK Industry, NNFCC 11-011", Retrieved on 2011-11-17
  26. National Non-Food Crops Centre. "Evaluation of Opportunities for Converting Indigenous UK Wastes to Fuels and Energy (Report), NNFCC 09-012", Retrieved on 2011-06-27
  27. Green waste removal case study
  28. Well-to-Wheels analysis of future automotive fuels and powertrains in the European context EUCAR / Concawe /JRC Well-to-Wheels Report Version 2c, March 2007
  29. http://www.iogen.ca/ IOGEN
  30. "European Commission - PRESS RELEASES - Press release - State aid: Commission approves Swedish €55 million aid for «Domsjö» R&D project". Retrieved 22 September 2015.
  31. "UPM to build the world’s first biorefinery producing wood-based biodiesel". Retrieved 22 September 2015.
  32. http://www.iogen.ca/news_events/press_releases/2012_04_30_refocus.pdf
  33. "The potential and challenges of drop-in biofuels" (PDF). IEA Bioenergy Task 39. Retrieved September 10, 2015.
  34. "The Potential and Challenges of Drop-in Biofuels" (PDF). IEA Bioenergy Task 39.

External links

This article is issued from Wikipedia - version of the Sunday, February 07, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.