ARHGAP25

Rho GTPase activating protein 25 is a protein that in humans is encoded by the ARHGAP25 gene.[1] The gene is also known as KAIA0053.[1] ARHGAP25 belongs to a family of Rho GTPase-modulating proteins that are implicated in actin remodeling, cell polarity, and cell migration.[2]

Model organisms

Model organisms have been used in the study of ARHGAP25 function. A conditional knockout mouse line, called Arhgap25tm1a(KOMP)Wtsi[9][10] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[11][12][13]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[7][14] Twenty-one tests were carried out on homozygous-mutant mice and one significant abnormality was observed: abnormal retina morphology and pigmentation.[7]

References

  1. 1 2 "Rho GTPase activating protein 25". Retrieved 2011-12-05.
  2. Katoh, M.; Katoh, M. (2004). "Identification and characterization of ARHGAP24 and ARHGAP25 genes in silico". International journal of molecular medicine 14 (2): 333–338. doi:10.3892/ijmm.14.2.333. PMID 15254788.
  3. "Eye morphology data for Arhgap25". Wellcome Trust Sanger Institute.
  4. "Clinical chemistry data for Arhgap25". Wellcome Trust Sanger Institute.
  5. "Salmonella infection data for Arhgap25". Wellcome Trust Sanger Institute.
  6. "Citrobacter infection data for Arhgap25". Wellcome Trust Sanger Institute.
  7. 1 2 3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  8. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  9. "International Knockout Mouse Consortium".
  10. "Mouse Genome Informatics".
  11. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  12. Dolgin E (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  13. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  14. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading

  • Takefuji, M.; Asano, H.; Mori, K.; Amano, M.; Kato, K.; Watanabe, T.; Morita, Y.; Katsumi, A.; Itoh, T.; Takenawa, T.; Hirashiki, A.; Izawa, H.; Nagata, K.; Hirayama, H.; Takatsu, F.; Naoe, T.; Yokota, M.; Kaibuchi, K. (2009). "Mutation of ARHGAP9 in patients with coronary spastic angina". Journal of Human Genetics 55 (1): 42–49. doi:10.1038/jhg.2009.120. PMID 19911011. 
  • Nomura, N.; Nagase, T.; Miyajima, N.; Sazuka, T.; Tanaka, A.; Sato, S.; Seki, N.; Kawarabayasi, Y.; Ishikawa, K.; Tabata, S. (1994). "Prediction of the coding sequences of unidentified human genes. II. The coding sequences of 40 new genes (KIAA0041-KIAA0080) deduced by analysis of cDNA clones from human cell line KG-1". DNA research : an international journal for rapid publication of reports on genes and genomes 1 (5): 223–229. doi:10.1093/dnares/1.5.223. PMID 7584044. 
This article is issued from Wikipedia - version of the Friday, August 28, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.