744 Aguntina
Discovery [1] | |
---|---|
Discovered by | J. Rheden |
Discovery site | Vienna Observatory |
Discovery date | 26 February 1913 |
Designations | |
MPC designation | 744 Aguntina |
Named after |
Aguntum (ancient Roman town)[2] |
1913 QW · 1930 DZ 1950 TL4 | |
main-belt · (outer) [3] | |
Orbital characteristics [1] | |
Epoch 27 June 2015 (JD 2457200.5) | |
Uncertainty parameter 0 | |
Observation arc | 102.27 yr (37,355 days) |
Aphelion | 3.5468 AU |
Perihelion | 2.7948 AU |
3.1708 AU | |
Eccentricity | 0.1185 |
5.65 yr (2,062 days) | |
17.399° | |
Inclination | 7.7161° |
142.66° | |
28.614° | |
Physical characteristics | |
Dimensions |
±7.0 km ( 58.69IRAS:25)[4] ±0.86 km 55.80[5] ±1.218 km 60.821[6] ±3.88 km 68.52[7] |
±0.05 17.47h[8] ±0.0544 h 17.5020[9] | |
±0.012 ( 0.0423IRAS:25)[4] ±0.002 0.048[5] ±0.0087 0.0394[6] ±0.006 0.031[7] | |
B–V = 0.657 U–B = 0.161 Tholen = FX: F [3] | |
10.21[1] | |
|
744 Aguntina, provisional designation 1913 QW, is a rare-type carbonaceous asteroid from the outer region of the asteroid belt, about 60 kilometers in diameter. It was discovered by Austrian astronomer Joseph Rheden at Vienna Observatory, Austria, on 26 February 1913.[10]
The dark F-type asteroid, classified as a FX-subtype in the Tholen taxonomic scheme, orbits the Sun at a distance of 2.8–3.5 AU once every 5 years and 8 months (2,062 days). Its orbit is tilted by 8 degrees to the plane of the ecliptic and shows an eccentricity of 0.12.
Photometric observations during 2003 showed a rotation period of ±0.05 hours with a brightness variation of 17.47±0.05 in 0.50magnitude.[8] The period has since been confirmed by an additional observation.[9] According to the surveys carried out by the Infrared Astronomical Satellite, IRAS, the Japanese Akari satellite, and the U.S. Wide-field Infrared Survey Explorer with its subsequent NEOWISE mission, the asteroid's surface has a very low albedo between 0.03 and 0.05 and a diameter estimate that varies between 55 and 68 kilometers.[4][5][6][7]
The minor planet was named for the ancient Roman town, Aguntum, in the Noricum province of the Roman Empire, in what is nowadays mostly Austria. The naming information was given by the discoverer's widow, who was also the daughter of prolific astronomer Johann Palisa. The historic ruins are located close to Lienz in East Tyrol, the home town of the discoverer.[2] In 1912, shortly before the minor planet's discovery, extensive excavations took place at the Roman site which unearthed coins, pottery masks, bronze objects, and painted tombstones.
References
- 1 2 3 "JPL Small-Body Database Browser: 744 Aguntina (1913 QW)" (2015-07-12 last obs.). Jet Propulsion Laboratory. Retrieved January 2016.
- 1 2 Schmadel, Lutz D. (2003). Dictionary of Minor Planet Names – (744) Aguntina. Springer Berlin Heidelberg. p. 71. ISBN 978-3-540-29925-7. Retrieved January 2016.
- 1 2 "LCDB Data for (744) Aguntina". Asteroid Lightcurve Database (LCDB). Retrieved January 2016.
- 1 2 3 Tedesco, E. F.; Noah, P. V.; Noah, M.; Price, S. D. (October 2004). "IRAS Minor Planet Survey V6.0". NASA Planetary Data System. Bibcode:2004PDSS...12.....T. Retrieved January 2016.
- 1 2 3 Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey". Publications of the Astronomical Society of Japan 63 (5): 1117–1138. Bibcode:2011PASJ...63.1117U. doi:10.1093/pasj/63.5.1117. Retrieved January 2016.
- 1 2 3 Mainzer, A.; Grav, T.; Masiero, J.; Hand, E.; Bauer, J.; Tholen, D.; et al. (November 2011). "NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results". The Astrophysical Journal 741 (2): 25. arXiv:1109.6407. Bibcode:2011ApJ...741...90M. doi:10.1088/0004-637X/741/2/90. Retrieved January 2016.
- 1 2 3 Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Nugent, C.; et al. (November 2012). "Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids". The Astrophysical Journal Letters 759 (1): 5. arXiv:1209.5794. Bibcode:2012ApJ...759L...8M. doi:10.1088/2041-8205/759/1/L8. Retrieved January 2016.
- 1 2 Cooney, Walter R., Jr. (March 2005). "Lightcurve results for minor planets 228 Agathe, 297 Caecilia, 744 Aguntina 1062 Ljuba, 1605 Milankovitch, and 3125 Hay". Bulletin of the Minor Planets (Section of the Association of Lunar and Planetary Observers) 32 (1): 15–16. Bibcode:2005MPBu...32...15C. ISSN 1052-8091. Retrieved January 2016.
- 1 2 Waszczak, Adam; Chang, Chan-Kao; Ofek, Eran O.; Laher, Russ; Masci, Frank; Levitan, David; et al. (September 2015). "Asteroid Light Curves from the Palomar Transient Factory Survey: Rotation Periods and Phase Functions from Sparse Photometry". The Astronomical Journal 150 (3): 35. arXiv:1504.04041. Bibcode:2015AJ....150...75W. doi:10.1088/0004-6256/150/3/75. Retrieved January 2016.
- ↑ "744 Aguntina (1913 QW)". Minor Planet Center. Retrieved January 2016.
External links
- Asteroid Lightcurve Database (LCDB), query form (info)
- Dictionary of Minor Planet Names, Google books
- Asteroids and comets rotation curves, CdR – Observatoire de Genève, Raoul Behrend
- Discovery Circumstances: Numbered Minor Planets (1)-(5000) – Minor Planet Center
- 744 Aguntina at the JPL Small-Body Database
|
|