Tetraoctagonal tiling

Tetraoctagonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration(4.8)2
Schläfli symbolr{8,4}
rr{8,8}
rr(4,4,4)
t0,1,2,3{(,4,,4)}
Wythoff symbol2 | 8 4
Coxeter diagram


Symmetry group[8,4], (*842)
[8,8], (*882)
[(4,4,4)], (*444)
[(,4,,4)], (*4242)
DualOrder-8-4 quasiregular rhombic tiling
PropertiesVertex-transitive edge-transitive

In geometry, the tetraoctagonal tiling is a uniform tiling of the hyperbolic plane.

Constructions

There are for uniform constructions of this tiling, three of them as constructed by mirror removal from the [8,4] or (*842) orbifold symmetry. Removing the miror between the order 2 and 4 points, [8,4,1+], gives [8,8], (*882). Removing the mirror between the order 2 and 8 points, [1+,8,4], gives [(4,4,4)], (*444). Removing both mirrors, [1+,8,4,1+], leaves a rectangular fundamental domain, [(∞,4,∞,4)], (*4242).

Four uniform constructions of 4.8.4.8
Name Tetraoctagonal tiling Rhombioctaoctagonal tiling
Image
Symmetry [8,4]
(*842)
[8,8] = [8,4,1+]
(*882)
=
[(4,4,4)] = [1+,8,4]
(*444)
=
[(∞,4,∞,4)] = [1+,8,4,1+]
(*4242)
= or
Schläfli symbol r{8,4} rr{8,8} r(4,4,4) t0,1,2,3(∞,4,∞,4)
Coxeter diagram = =
or

Symmetry

The dual tiling has face configuration V4.8.4.8, and represents the fundamental domains of a quadrilateral kaleidoscope, orbifold (*4242), shown here. Adding a 2-fold gyration point at the center of each rhombi defines a (2*42) orbifold.

Related polyhedra and tiling

*n42 symmetry mutations of quasiregular tilings: (4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*42
[,4]
 
[ni,4]
Figures
Config. (4.3)2 (4.4)2 (4.5)2 (4.6)2 (4.7)2 (4.8)2 (4.)2 (4.ni)2
Dimensional family of quasiregular polyhedra and tilings: 8.n.8.n
Symmetry
*8n2
[n,8]
Hyperbolic... Paracompact Noncompact
*832
[3,8]
*842
[4,8]
*852
[5,8]
*862
[6,8]
*872
[7,8]
*882
[8,8]...
*82
[,8]
 
[iπ/λ,8]
Coxeter
Quasiregular
figures
configuration

3.8.3.8

4.8.4.8

8.5.8.5

8.6.8.6

8.7.8.7

8.8.8.8

8..8.
 
8..8.
Uniform octaoctagonal tilings
Symmetry: [8,8], (*882)
=
=
=
=
=
=
=
=
=
=
=
=
=
=
{8,8} t{8,8}
r{8,8} 2t{8,8}=t{8,8} 2r{8,8}={8,8} rr{8,8} tr{8,8}
Uniform duals
V88 V8.16.16 V8.8.8.8 V8.16.16 V88 V4.8.4.8 V4.16.16
Alternations
[1+,8,8]
(*884)
[8+,8]
(8*4)
[8,1+,8]
(*4242)
[8,8+]
(8*4)
[8,8,1+]
(*884)
[(8,8,2+)]
(2*44)
[8,8]+
(882)
= = = =
=
=
=
h{8,8} s{8,8} hr{8,8} s{8,8} h{8,8} hrr{8,8} sr{8,8}
Alternation duals
V(4.8)8 V3.4.3.8.3.8 V(4.4)4 V3.4.3.8.3.8 V(4.8)8 V46 V3.3.8.3.8
Uniform (4,4,4) tilings
Symmetry: [(4,4,4)], (*444) [(4,4,4)]+
(444)
[(1+,4,4,4)]
(*4242)
[(4+,4,4)]
(4*22)
t0{(4,4,4)} t0,1{(4,4,4)} t1{(4,4,4)} t1,2{(4,4,4)} t2{(4,4,4)} t0,2{(4,4,4)} t0,1,2{(4,4,4)} s{(4,4,4)} h{(4,4,4)} hr{(4,4,4)}
Uniform duals
V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V8.8.8 V3.4.3.4.3.4 V88 V(4,4)3

See also

Wikimedia Commons has media related to Uniform tiling 4-8-4-8.

References

External links

This article is issued from Wikipedia - version of the Sunday, October 26, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.