2-category

In category theory, a 2-category is a category with "morphisms between morphisms"; that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category enriched over Cat (the category of categories and functors, with the monoidal structure given by product of categories).

Definition

A 2-category C consists of:

The notion of 2-category differs from the more general notion of a bicategory in that composition of 1-cells (horizontal composition) is required to be strictly associative, whereas in a bicategory it needs only be associative up to a 2-isomorphism. The axioms of a 2-category are consequences of their definition as Cat-enriched categories:

(\alpha\circ_0\beta)\circ_1(\gamma\circ_0\delta) = (\alpha\circ_1\gamma)\circ_0(\beta\circ_1\delta)

The interchange law follows from the fact that \circ_0 is a functor between hom categories. It can be drawn as a pasting diagram as follows:

 =   =  \circ_0
\circ_1

Here the left-hand diagram denotes the vertical composition of horizontal composites, the right-hand diagram denotes the horizontal composition of vertical composites, and the diagram in the centre is the customary representation of both.

Doctrines

In mathematics, a doctrine is simply a 2-category which is heuristically regarded as a system of theories. For example, algebraic theories, as invented by Lawvere, is an example of a doctrine, as are multi-sorted theories, operads, categories, and toposes.

The objects of the 2-category are called theories, the 1-morphisms f\colon A\rightarrow B are called models of the A in B, and the 2-morphisms are called morphisms between models.

The distinction between a 2-category and a doctrine is really only heuristic: one does not typically consider a 2-category to be populated by theories as objects and models as morphisms. It is this vocabulary that makes the theory of doctrines worth while.

For example, the 2-category Cat of categories, functors, and natural transformations is a doctrine. One sees immediately that all presheaf categories are categories of models.

As another example, one may take the subcategory of Cat consisting only of categories with finite products as objects and product-preserving functors as 1-morphisms. This is the doctrine of multi-sorted algebraic theories. If one only wanted 1-sorted algebraic theories, one would restrict the objects to only those categories that are generated under products by a single object.

Doctrines were invented by J. M. Beck.

See also

References

This article is issued from Wikipedia - version of the Thursday, June 18, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.