Orders of magnitude (energy)
This list compares various energies in joules (J), organized by order of magnitude.
Factor (Joules) | SI prefix | Value | Item |
---|---|---|---|
10−34 | 6.626×10−34 J | Energy of a 1-hertz radio photon.[1] | |
10−33 | 2×10−33 J | average kinetic energy of translational motion of a molecule at the lowest temperature reached, 100 picokelvins as of 2003[2] | |
10−28 | 6.6×10−28 J | energy of a typical AM radio photon (1 MHz) (4×10−9 eV)[3] | |
10−24 | yocto- (yJ) | 1.6×10−24 J | energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)[4][5] |
10−23 | 2×10−23 J | average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7] | |
10−22 | 2-3000×10−22 J | energy of infrared light photons[8] | |
10−21 | zepto- (zJ) | 1.7×10−21 J | 1 kJ/mol, converted to energy per molecule[9] |
2.1×10−21 J | thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10] | ||
2.856×10−21 J | by Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information | ||
3–7×10−21 J | energy of a van der Waals interaction between atoms (0.02–0.04 eV)[11][12] | ||
4.1×10−21 J | "kT" at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13] | ||
7–22×10−21 J | energy of a hydrogen bond (0.04 to 0.13 eV)[11][14] | ||
10−20 | 4.5×10−20 J | upper bound of the mass-energy of a neutrino in particle physics (0.28 eV)[15][16] | |
10−19 | 1.6×10−19 J | ≈1 electronvolt (eV)[17] | |
3–5×10−19 J | energy range of photons in visible light[18][19] | ||
3–14×10−19 J | energy of a covalent bond (2–9 eV)[11][20] | ||
5–200×10−19 J | energy of ultraviolet light photons[8] | ||
10−18 | atto- (aJ) | ||
10−17 | 2-2000×10−17 J | energy range of X-ray photons[8] | |
10−16 | |||
10−15 | femto- (fJ) | ||
10−14 | > 2×10−14 J | energy of gamma ray photons[8] | |
2.7×10−14 J | upper bound of the mass-energy of a muon neutrino[21][22] | ||
8.2×10−14 J | rest mass-energy of an electron[23] | ||
10−13 | 1.6×10−13 J | 1 megaelectronvolt (MeV)[24] | |
10−12 | pico- (pJ) | 2.3×10−12 J | kinetic energy of neutrons produced by D-T fusion, used to trigger fission (14.1 MeV)[25][26] |
10−11 | 3.4×10−11 J | average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[27][28] | |
10−10 | 1.5030×10−10 J | rest mass-energy of a proton[29] | |
1.505×10−10 J | rest mass-energy of a neutron[30] | ||
1.6×10−10 J | 1 gigaelectronvolt (GeV)[31] | ||
3×10−10 J | rest mass-energy of a deuteron[32] | ||
6×10−10 J | rest mass-energy of an alpha particle[33] | ||
10−9 | nano- (nJ) | 1.6×10−9 J | 10 GeV[34] |
8×10−9 J | initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[35][36] | ||
10−8 | 1.3×10−8 J | mass-energy of a W boson (80.4 GeV)[37][38] | |
1.5×10−8 J | mass-energy of a Z boson (91.2 GeV)[39][40] | ||
1.6×10−8 J | 100 GeV[41] | ||
2×10−8 J | mass-energy of the Higgs Boson (125.1 GeV)[42] | ||
6.4×10−8 J | operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[43][44] | ||
10−7 | 1×10−7 J | ≡ 1 erg[45] | |
1.6×10−7 J | 1 TeV (teraelectronvolt),[46] about the kinetic energy of a flying mosquito[47] | ||
10−6 | micro- (µJ) | 1.04×10−6 J | energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[48][49] |
10−5 | |||
10−4 | |||
10−3 | milli- (mJ) | ||
10−2 | centi- (cJ) | ||
10−1 | deci- (dJ) | 1.1×10−1 J | energy of an American half-dollar falling 1-metre[50][51] |
100 | J | 1 J | ≡ 1 N·m (newton–metre) |
1 J | ≡ 1 W·s (watt-second) | ||
1 J | kinetic energy produced as an extra small apple (~100 grams[52]) falls 1 meter against Earth's gravity[53] | ||
1 J | energy required to heat 1 gram of dry, cool air by 1-degree Celsius[54] | ||
1.4 J | ≈ 1 ft·lbf (foot-pound force)[45] | ||
4.184 J | ≡ 1 thermochemical calorie (small calorie)[45] | ||
4.1868 J | ≡ 1 International (Steam) Table calorie[55] | ||
8 J | Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[56][57] | ||
101 | deca- (daJ) | 5×101 J | the most energetic cosmic ray ever detected[58] was most likely a single proton traveling only slightly slower than the speed of light.[59] |
102 | hecto- (hJ) | 1×102 J | flash energy of a typical pocket camera electronic flash capacitor (100–400 µF @ 330 V)[60][61] |
3×102 J | energy of a lethal dose of X-rays[62] | ||
3×102 J | kinetic energy of an average person jumping as high as they can[63][64][65] | ||
3.3×102 J | energy to melt 1 g of ice[66] | ||
> 3.6×102 J | kinetic energy of 800 g[67] standard men's javelin thrown at > 30 m/s[68] by elite javelin throwers[69] | ||
5–20×102 J | energy output of a typical photography studio strobe light in a single flash[70] | ||
6×102 J | kinetic energy of 2 kg[71] standard men's discus thrown at 24.4 m/s by the world record holder Jürgen Schult[72] | ||
6×102 J | use of a 10-watt flashlight for 1-minute | ||
7.5×102 J | a power of 1 horsepower applied for 1 second[45] | ||
7.8×102 J | kinetic energy of 7.26 kg[73] standard men's shot thrown at 14.7 m/s by the world record holder Randy Barnes[74] | ||
103 | kilo- (kJ) | 1.1×103 J | ≈ 1 British thermal unit (BTU), depending on the temperature[45] |
1.4×103 J | total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[75] | ||
1.8×103 J | kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[76] | ||
2.3×103 J | energy to vaporize 1 g of water into steam[77] | ||
3×103 J | Lorentz force can crusher pinch[78] | ||
3.4×103 J | kinetic energy of world-record men's hammer throw (7.26 kg[79] thrown at 30.7 m/s[80] in 1986)[81] | ||
3.6×103 J | ≡ 1 W·h (watt-hour)[45] | ||
4.2×103 J | energy released by explosion of 1 gram of TNT[45][82] | ||
4.2×103 J | ≈ 1 food Calorie (large calorie) | ||
~7×103 J | muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[83] | ||
9×103 J | energy in an alkaline AA battery[84] | ||
104 | 1.7×104 J | energy released by the metabolism of 1 gram of carbohydrates[85] or protein[86] | |
3.8×104 J | energy released by the metabolism of 1 gram of fat[87] | ||
4–5×104 J | energy released by the combustion of 1 gram of gasoline[88] | ||
5×104 J | kinetic energy of 1 gram of matter moving at 10 km/s[89] | ||
105 | 3×105 J—15×105 J | kinetic energy of an automobile at highway speeds (1 to 5 tons[90] at 89 km/h or 55 mph)[91] | |
5×105 J | kinetic energy of 1 gram of a meteor hitting Earth[92] | ||
106 | mega- (MJ) | 1×106 J | kinetic energy of a 2 tonne[90] vehicle at 32 metres per second (72 miles per hour)[93] |
1.2×106 J | approximate food energy of a snack such as a Snickers bar (280 food calories)[94] | ||
3.6×106 J | = 1 kWh (kilowatt-hour) (used for electricity)[45] | ||
4.2×106 J | energy released by explosion of 1 kilogram of TNT[45][82] | ||
8.4×106 J | recommended food energy intake per day for a moderately active woman (2000 food calories)[95][96] | ||
107 | 1×107 J | kinetic energy of the armor-piercing round fired by the assault guns of the ISU-152 tank[97] | |
1.1×107 J | recommended food energy intake per day for a moderately active man (2600 food calories)[95][98] | ||
3.7×107 J | $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[99][100][101] | ||
4×107 J | energy from the combustion of 1 cubic meter of natural gas[102] | ||
4.2×107 J | caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[103] | ||
6.3×107 J | theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[104] | ||
108 | 1×108 J | kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots) | |
1.1×108 J | ≈ 1 therm, depending on the temperature[45] | ||
1.1×108 J | ≈ 1 Tour de France, or ~90 hours[105] ridden at 5 W/kg[106] by a 65 kg rider[107] | ||
7.3×108 J | ≈ energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude) | ||
109 | giga- (GJ) | 1.10×109 J | energy in an average lightning bolt[108] (thunder) |
1.1×109 J | magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[109] | ||
1.4x109 J | theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[110][111] | ||
2x109 J | Energy of an ordinary 61 liter gasoline tank of a car.[88][112][113] | ||
2×109 J | Planck energy, the unit of energy in Planck units[114] | ||
3.3×109 J | approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[115][116] | ||
4.5×109 J | average annual energy usage of a standard refrigerator[117][118] | ||
6.1×109 J | ≈ 1 bboe (barrel of oil equivalent)[119] | ||
1010 | 2.3×1010 J | kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 562 knots or 289 m/s) | |
4.2×1010 J | ≈ 1 toe (ton of oil equivalent)[119] | ||
5×1010 J | yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[120][121] | ||
7.3×1010 J | energy consumed by the average U.S. automobile in the year 2000[122][123][124] | ||
8.6×1010 J | ≈ 1 MW·d (megawatt-day), used in the context of power plants[125] | ||
8.8×1010 J | total energy released in the nuclear fission of one gram of uranium-235[27][28][126] | ||
1011 | |||
1012 | tera- (TJ) | 3.4×1012 J | max fuel energy of an Airbus A330-300 (97,530 liters[127] of Jet A-1[128])[129] |
3.6×1012 J | 1 GW·h (gigawatt-hour)[130] | ||
4×1012 J | electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[131] thermal efficiency of reactor[132][133] | ||
6.4×1012 J | energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[134] of Jet A-1[128])[135] | ||
1013 | 1.1×1013 J | energy of the maximum fuel an Airbus A380 can carry (320,000 liters[136] of Jet A-1[128])[137] | |
1.2×1013 J | orbital kinetic energy of the International Space Station (417 tonnes[138] at 7.7 km/s[139])[140] | ||
6.3×1013 J | yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[141][142] | ||
9×1013 J | theoretical total mass-energy of 1 gram of matter[143] | ||
1014 | 6×1014 J | energy released by an average hurricane in 1 second[144] | |
1015 | peta- (PJ) | > 1015 J | energy released by a severe thunderstorm[145] |
1×1015 J | yearly electricity consumption in Greenland as of 2008[146][147] | ||
4.2×1015 J | energy released by explosion of 1 megaton of TNT[45][148] | ||
1016 | 1×1016 J | estimated impact energy released in forming Meteor Crater | |
1.1×1016 J | yearly electricity consumption in Mongolia as of 2010[146][149] | ||
9×1016 J | mass-energy in 1 kilogram of antimatter (or matter)[150] | ||
1017 | 1×1017 J | energy released on the Earth's surface by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[151] | |
1.7×1017 J | total energy from the Sun that strikes the face of the Earth each second[152] | ||
2.1×1017 J | yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[153][154] | ||
4.2×1017 J | yearly electricity consumption of Norway as of 2008[146][155] | ||
4.5×1017 J | approximate energy needed to accelerate one ton to one-tenth of the speed of light | ||
8×1017 J | estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[156][157] | ||
1018 | exa- (EJ) | 1.4×1018 J | yearly electricity consumption of South Korea as of 2009[146][158] |
1019 | 1.4×1019 J | yearly electricity consumption in the U.S. as of 2009[146][159] | |
1.4×1019J | yearly electricity production in the U.S. as of 2009[160][161] | ||
5×1019 J | energy released in 1-day by an average hurricane in producing rain (400 times greater than the wind energy)[144] | ||
6.4×1019 J | yearly electricity consumption of the world as of 2008[162][163] | ||
6.8×1019 J | yearly electricity generation of the world as of 2008[162][164] | ||
1020 | 5x1020 J | total world annual energy consumption in 2010[165][166] | |
8×1020 J | estimated global uranium resources for generating electricity 2005[167][168][169][170] | ||
1021 | zetta- (ZJ) | 6.9×1021 J | estimated energy contained in the world's natural gas reserves as of 2010[165][171] |
7.9×1021 J | estimated energy contained in the world's petroleum reserves as of 2010[165][172] | ||
1022 | 1.5×1022J | total energy from the Sun that strikes the face of the Earth each day[152][173] | |
2.4×1022 J | estimated energy contained in the world's coal reserves as of 2010[165][174] | ||
2.9×1022 J | identified global uranium-238 resources using fast reactor technology[167] | ||
3.9×1022 J | estimated energy contained in the world's fossil fuel reserves as of 2010[165][175] | ||
4×1022 J | estimated total energy released by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[176] | ||
1023 | |||
2.2×1023 J | total global uranium-238 resources using fast reactor technology[167] | ||
5×1023 J | approximate energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[177] | ||
1024 | yotta- (YJ) | 5.5×1024 J | total energy from the Sun that strikes the face of the Earth each year[152][178] |
1025 | |||
1026 | 1.3×1026 J | conservative estimate of the energy released by the impact that created the Caloris basin on Mercury | |
3.8×1026 J | total energy output of the Sun each second[179] | ||
1027 | |||
1028 | 3.8×1028 J | kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[180][181] | |
1029 | 2.1×1029 J | rotational energy of the Earth[182][183][184] | |
1030 | 1.8×1030 J | gravitational binding energy of Mercury | |
1031 | 3.3×1031 J | total energy output of the Sun each day[179][185] | |
1032 | 2×1032 J | gravitational binding energy of the Earth[186] | |
1033 | 2.7×1033 J | Earth's kinetic energy in its orbit[187] | |
1034 | 1.2×1034 J | total energy output of the Sun each year[179][188] | |
1039 | 6.6×1039 J | theoretical total mass-energy of the Moon | |
1041 | 5.4×1041 J | theoretical total mass-energy of the Earth[189][190] | |
6.87×1041 J | gravitational binding energy of the Sun[191] | ||
1043 | 5×1043 J | total energy of all gamma rays in a typical gamma-ray burst[192][193] | |
1044 | 1–2×1044 J | estimated energy released in a supernova,[194] sometimes referred to as a foe | |
×1044 J 1.2 | Approximate lifetime energy output of the Sun. | ||
1045 | ±0.2)×1045 J (1.1 | Brightest observed hypernova ASASSN-15lh[195] | |
few times×1045 J | Beaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic Gamma Ray Burst[196][197][198][199][200] | ||
1046 | 1×1046 J | estimated energy released in a hypernova[201] | |
1047 | 1.8×1047 J | theoretical total mass-energy of the Sun[202][203] | |
5.4×1047 J | mass-energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO[204] | ||
8.8×1047 J | GRB 080916C - the most powerful Gamma-Ray Burst (GRB) ever recorded - total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the sun’s mass turned to energy.[205] | ||
1053 | 6x1053 J | total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[206] | |
1054 | 3x1054 J | total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[207] | |
1055 | 1055 J | total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421 | |
1058 | 4×1058 J | visible mass-energy in our galaxy, the Milky Way[208][209] | |
1059 | 1×1059 J | total mass-energy of our galaxy, the Milky Way, including dark matter and dark energy[210][211] | |
1062 | 1–2×1062 J | total mass-energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[212] | |
1069 | 4×1069 J | estimated total mass-energy of the observable universe[213] | |
SI multiples
Submultiples | Multiples | |||||
---|---|---|---|---|---|---|
Value | SI symbol | Name | Value | SI symbol | Name | |
10−1 J | dJ | decijoule | 101 J | daJ | decajoule | |
10−2 J | cJ | centijoule | 102 J | hJ | hectojoule | |
10−3 J | mJ | millijoule | 103 J | kJ | kilojoule | |
10−6 J | µJ | microjoule | 106 J | MJ | megajoule | |
10−9 J | nJ | nanojoule | 109 J | GJ | gigajoule | |
10−12 J | pJ | picojoule | 1012 J | TJ | terajoule | |
10−15 J | fJ | femtojoule | 1015 J | PJ | petajoule | |
10−18 J | aJ | attojoule | 1018 J | EJ | exajoule | |
10−21 J | zJ | zeptojoule | 1021 J | ZJ | zettajoule | |
10−24 J | yJ | yoctojoule | 1024 J | YJ | yottajoule |
This SI unit is named after James Prescott Joule. As with every International System of Units (SI) unit named for a person, the first letter of its symbol is upper case (J). However, when an SI unit is spelled out in English, it should always begin with a lower case letter (joule)—except in a situation where any word in that position would be capitalized, such as at the beginning of a sentence or in material using title case. Note that "degree Celsius" conforms to this rule because the "d" is lowercase.— Based on The International System of Units, section 5.2.
See also
- Conversion of units of energy
- Energies per unit mass
- List of energy topics
- Metric system
- TNT equivalent
- Scientific notation
- Energy conversion efficiency
Notes
- ↑ http://www.britannica.com/EBchecked/topic/462917/Plancks-constant
- ↑ Calculated: KE_avg ≈ (3/2) * T * 1.38E-23 = (3/2) * 1E-10 * 1.38E-23 ≈ 2.07E-33 J
- ↑ Calculated: E_photon = hv = 6.626e-34 J-s * 1e6 Hz = 6.6e-28 J. In eV: 6.6e-28 J / 1.6e-19 J/eV = 4.1e-9 eV.
- ↑ "Frequency of a Microwave Oven". The Physics Factbook. Retrieved 15 November 2011.
- ↑ Calculated: E_photon = hv = 6.626e-34 J-s * 2.45e8 Hz = 1.62e-24 J. In eV: 1.62e-24 J / 1.6e-19 J/eV = 1.0e-5 eV.
- ↑ "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 13 November 2011.
- ↑ Calculated: KE_avg ≈ (3/2) * T * 1.38E-23 = (3/2) * 1 * 1.38E-23 ≈ 2.07E-23 J
- 1 2 3 4 "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. Retrieved 15 November 2011.
- ↑ Calculated: 1e3 J / 6.022e23 entities per mole = 1.7e-21 J per entity
- ↑ Calculated: 1.381e-23 J/K * 298.15 K / 2 = 2.1e-21 J
- 1 2 3 "Bond Lengths and Energies". Chem 125 notes. UCLA. Retrieved 13 November 2011.
- ↑ Calculated: 2 to 4 kJ/mol = 2e3 J / 6.022e23 molecules/mol = 3.3e-21 J. In eV: 3.3e-21 J / 1.6e-19 J/eV = 0.02 eV. 4e3 J / 6.022e23 molecules/mol = 6.7e-21 J. In eV: 6.7e-21 J / 1.6e-19 J/eV = 0.04 eV.
- ↑ Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. Retrieved 13 November 2011.
- ↑ Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4e3 J / 6.022e23 molecules/mol = 6.7e-21 J. In eV: 6.7e-21 J / 1.6e-19 eV/J = 0.042 eV. 13 kJ/mol = 13e3 J / 6.022e23 molecules/mol = 2.2e-20 J. In eV: 13e3 J / 6.022e23 molecules/mol / 1.6e-19 eV/J = 0.13 eV.
- ↑ Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey". Physical Review Letters 105 (3): 031301. arXiv:0911.5291. Bibcode:2010PhRvL.105c1301T. doi:10.1103/PhysRevLett.105.031301. PMID 20867754.
- ↑ Calculated: 0.28 eV * 1.6e-19 J/eV = 4.5e-20 J
- ↑ "CODATA Value: electron volt". NIST. Retrieved 4 November 2011.
- ↑ "BASIC LAB KNOWLEDGE AND SKILLS". Retrieved 5 November 2011.
Visible wavelengths are roughly from 390 nm to 780 nm
- ↑ Calculated: E = h * c / lambda. E_780_nm = 6.6e-34 kg-m^2/s * 3e8 m/s / (780e-9 m) = 2.5e-19 J. E_390 _nm = 6.6e-34 kg-m^2/s * 3e8 m/s / (390e-9 m) = 5.1e-19 J
- ↑ Calculated: 50 kcal/mol * 4.184 J/calorie / 6.0e22e23 molecules/mol = 3.47e-19 J. (3.47e-19 J / 1.60e-19 eV/J = 2.2 eV.) and 200 kcal/mol * 4.184 J/calorie / 6.0e22e23 molecules/mol = 1.389e-18 J. (7.64e-19 J / 1.60e-19 eV/J = 8.68 eV.)
- ↑ Thomas J Bowles (2000). P. Langacker, ed. Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1–26 June 1998. World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 11 November 2011.
an upper limit ov m_v_u < 170 keV
- ↑ Calculated: 170e3 eV * 1.6e-19 J/eV = 2.7e-14 J
- ↑ "electron mass energy equivalent". NIST. Retrieved 4 November 2011.
- ↑ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ↑ Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Retrieved 5 November 2011.
The neutron comes out with high energy of 14.1 MeV
- ↑ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- 1 2 "Energy From Uranium Fission". HyperPhysics. Retrieved 8 November 2011.
- 1 2 "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ↑ "proton mass energy equivalent". NIST. Retrieved 4 November 2011.
- ↑ "neutron mass energy equivalent". NIST. Retrieved 4 November 2011.
- ↑ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ↑ "deuteron mass energy equivalent". NIST. Retrieved 4 November 2011.
- ↑ "alpha particle mass energy equivalent". NIST. Retrieved 4 November 2011.
- ↑ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ↑ Myers, Stephen. "The LEP Collider". CERN. Retrieved 14 November 2011.
the LEP machine energy is about 50 GeV per beam
- ↑ Calculated: 50e9 eV * 1.6e-19 J/eV = 8e-9 J
- ↑ "W". PDG Live. Particle Data Group. Retrieved 4 November 2011.
- ↑ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ↑ Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; Degrand, T. (2008). "Review of Particle Physics⁎". Physics Letters B 667: 1–6. Bibcode:2008PhLB..667....1P. doi:10.1016/j.physletb.2008.07.018.
- ↑ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ↑ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ↑ ATLAS; CMS (26 March 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments". arXiv:1503.07589.
- ↑ Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. Retrieved 14 November 2011.
A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976
- ↑ Calculated: 400e9 eV * 1.6e-19 J/eV = 6.4e-8 J
- 1 2 3 4 5 6 7 8 9 10 11 "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. Retrieved 4 November 2011.
1.355818
- ↑ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ↑ "Chocolate bar yardstick". Retrieved 24 January 2014.
A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.
- ↑ "First successful beam at record energy of 6.5 TeV". Retrieved 28 April 2015.
- ↑ Calculated: 6.5e12 eV per beam * 1.6e-19 J/eV = 1.04e-6 J
- ↑ "Coin specifications". United States Mint. Retrieved 2 November 2011.
11.340 g
- ↑ Calculated: m*g*h = 11.34e-3 kg * 9.8 m/s^2 * 1 m = 1.1e-1 J
- ↑ "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. Retrieved 8 December 2011.
- ↑ Calculated: m*g*h = 1e-1 kg * 9.8 m/s^2 * 1 m = 1 J
- ↑ "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2 November 2011.
- ↑ "Footnotes". NIST Guide to the SI. NIST. Retrieved 4 November 2011.
- ↑ "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. Retrieved 12 November 2011.
- ↑ Calculated: 5e19 eV * 1.6e-19 J/ev = 8 J
- ↑ "The Fly's Eye (1981–1993)". HiRes. Retrieved 14 November 2011.
- ↑ Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 441, no. 1, p. 144-150. Retrieved February 14, 2014.
- ↑ "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". Retrieved 8 December 2011.
The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.
- ↑ "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2012-09-02. Retrieved 6 June 2013.
- ↑ "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. Retrieved 5 November 2011.
- ↑ "Vertical Jump Test". Topend Sports. Retrieved 12 December 2011.
41–50 cm (males) 31–40 cm (females)
- ↑ "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011.
70 kg
- ↑ Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m*g*h = 70 kg * 9.8 m/s^2 * 40e-2 m = 274 J
- ↑ "Latent Heat of Melting of some common Materials". Engineering Toolbox. Retrieved 10 June 2013.
334 kJ/kg
- ↑ "Javelin Throw – Introduction". IAAF. Retrieved 12 December 2011.
- ↑ Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Retrieved 13 December 2011.
For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s
- ↑ Calculated: 1/2 * 0.8 kg * (30 m/s)^2 = 360 J
- ↑ Greenspun, Philip. "Studio Photography". Retrieved 13 December 2011.
Most serious studio photographers start with about 2000 watts-seconds
- ↑ "Discus Throw – Introduction". IAAF. Retrieved 12 December 2011.
- ↑ Calculated: 1/2 * 2 kg * (24.4 m/s)^2 = 595.4 J
- ↑ "Shot Put – Introduction". IAAF. Retrieved 12 December 2011.
- ↑ Calculated: 1/2 * 7.26 kg * (14.7 m/s)^2 = 784 J
- ↑ Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance" (PDF). Geophysical Research Letters 38: n/a. Bibcode:2011GeoRL..38.1706K. doi:10.1029/2010GL045777.
- ↑ "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. Retrieved 12 December 2011.
- ↑ "Fluids - Latent Heat of Evaporation". Engineering Toolbox. Retrieved 10 June 2013.
2257 kJ/kg
- ↑ powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002
- ↑ "Hammer Throw – Introduction". IAAF. Retrieved 12 December 2011.
- ↑ Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH" (pdf). Retrieved 4 November 2011.
The total release velocity is 30.7 m/sec
- ↑ Calculated: 1/2 * 7.26 kg * (30.7 m/s)^2 = 3420 J
- 1 2 4.2e9 J/ton of TNT-equivalent * (1 ton/1e6 grams) = 4.2e3 J/gram of TNT-equivalent
- ↑ ".458 Winchester Magnum" (pdf). Accurate Powder. Western Powders Inc. Retrieved 7 September 2010.
- ↑ "Battery energy storage in various battery sizes". AllAboutBatteries.com. Retrieved 15 December 2011.
- ↑ "Energy Density of Carbohydrates". The Physics Factbook. Retrieved 5 November 2011.
- ↑ "Energy Density of Protein". The Physics Factbook. Retrieved 5 November 2011.
- ↑ "Energy Density of Fats". The Physics Factbook. Retrieved 5 November 2011.
- 1 2 "Energy Density of Gasoline". The Physics Factbook. Retrieved 5 November 2011.
- ↑ Calculated: E = 1/2 m*v^2 = 1/2 * (1e-3 kg) * (1e4 m/s)^2 = 5e4 J.
- 1 2 "List of Car Weights". LoveToKnow. Retrieved 13 December 2011.
3000 to 12000 pounds
- ↑ Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m*v^2 = 1/2 * (1e3 kg) * (55 mph * 1600 m/mi / 3600 s/hr) = 3.0e5 J. E = 1/2 * (5e3 kg) * (55 mph * 1600 m/mi / 3600 s/hr) = 15e5 J.
- ↑ Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes.
- ↑ Calculated: KE = 1/2 * 2e3 kg * (32 m/s)^2 = 1.0e6 J
- ↑ "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. Retrieved 14 November 2011.
- 1 2 "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. Retrieved 14 November 2011.
- ↑ Calculated: 2000 food calories = 2.0e6 cal * 4.184 J/cal = 8.4e6 J
- ↑ Calculated: 1/2 * m * v^2 = 1/2 * 48.78 kg * (655 m/s)^2 = 1.0e7 J.
- ↑ Calculated: 2600 food calories = 2.6e6 cal * 4.184 J/cal = 1.1e7 J
- ↑ "Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. Retrieved 17 December 2011.
$28.90 per million BTU
- ↑ Calculated J per dollar: 1 million BTU/$28.90 = 1e6 BTU / 28.90 dollars * 1.055e3 J/BTU = 3.65e7 J/dollar
- ↑ Calculated cost per kWh: 1 kWh * 3.60e6 J/kWh / 3.65e7 J/dollar = 0.0986 dollar/kWh
- ↑ "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. Retrieved 15 December 2011.
- ↑ "The Olympic Diet of Michael Phelps". WebMD. Retrieved 28 December 2011.
- ↑ Cline, James E. D. "Energy to Space". Retrieved 13 November 2011.
6.27E7 Joules / Kg
- ↑ "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 10 December 2011.
- ↑ "Watts/kg". Flamme Rouge. Retrieved 4 November 2011.
- ↑ Calculated: 90 hr * 3600 seconds/hr * 5 W/kg * 65 kg = 1.1e8 J
- ↑ Smith, Chris. "How do Thunderstorms Work?". The Naked Scientists. Retrieved 15 November 2011.
It discharges about 1–10 billion joules of energy
- ↑ "Powering up ATLAS's mega magnet". Spotlight on... CERN. Retrieved 10 December 2011.
magnetic energy of 1.1 Gigajoules
- ↑ "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting. U.S. Department of Energy. Retrieved 14 November 2011.
377 kWh/mt
- ↑ Calculated: 380 kW-h * 3.6e6 J/kW-h = 1.37e9 J
- ↑ Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Retrieved 6 July 2008.
- ↑ thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin, 6 May 2012
- ↑
- ↑ "Power of a Human Heart". The Physics Factbook. Retrieved 10 December 2011.
The mechanical power of the human heart is ~1.3 watts
- ↑ Calculated: 1.3 J/s * 80 years * 3.16e7 s/year = 3.3e9 J
- ↑ "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. Retrieved 13 December 2011.
For refrigerators in 2001, the average UEC was 1,239 kWh
- ↑ Calculated: 1239 kWh * 3.6e6 J/kWh = 4.5e9 J
- 1 2 Energy Units, by Arthur Smith, 21 January 2005
- ↑ "Top 10 Biggest Explosions". Listverse. Retrieved 10 December 2011.
a yield of 11 tons of TNT
- ↑ Calculated: 11 tons of TNT-equivalent * 4.184e9 J/ton of TNT-equivalent = 4.6e10 J
- ↑ "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 12 December 2011.
581 gallons of gasoline
- ↑ "200 Mile-Per-Gallon Cars?". Retrieved 12 December 2011.
a gallon of gas ... 125 million joules of energy
- ↑ Calculated: 581 gallons * 125e6 J/gal = 7.26e10 J
- ↑ Calculated: 1e6 Watts * 86400 seconds/day = 8.6e10 J
- ↑ Calculated: 3.44e-10 J/U-235-fission * 1e-3 kg / (235 amu per U-235-fission * 1.66e-27 amu/kg) = 8.82e-10 J
- ↑ "A330-300 Dimensions & key data". Airbus. Retrieved 12 December 2011.
97530 litres
- 1 2 3 http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf
- ↑ Calculated: 97530 liters * 0.804 kg/L * 43.15 MJ/kg = 3.38e12 J
- ↑ Calculated: 1e9 Watts * 3600 seconds/hour
- ↑ Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (pdf). Energy Conversion. Retrieved 13 December 2011.
The thermal efficiency of a CANDU plant is only about 29%
- ↑ "CANDU and Heavy Water Moderated Reactors". Retrieved 12 December 2011.
fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium
- ↑ Calculated: 7500e6 Watt-days/tonne * (0.020 tonnes per bundle) * 86400 seconds/day = 1.3e13 J of burnup energy. Electricity = burnup * ~29% efficiency = 3.8e12 J
- ↑ "747 Classics Technical Specs". Boeing. Retrieved 12 December 2011.
183,380 L
- ↑ Calculated: 183380 liters * 0.804 kg/L * 43.15 MJ/kg = 6.36e12 J
- ↑ "A380-800 Dimensions & key data". Airbus. Retrieved 12 December 2011.
320,000 L
- ↑ Calculated: 320,000 l * 0.804 kg/L * 43.15 MJ/kg = 11.1e12 J
- ↑ "International Space Station: The ISS to Date". NASA. Retrieved 23 August 2011.
- ↑ "The wizards of orbits". European Space Agency. Retrieved 10 December 2011.
The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits
- ↑ Calculated: E = 1/2 m.v² = 1/2 * 417000 kg * (7700m/s)² = 1.2e13 J
- ↑ "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 4 November 2011.
21 kt
- ↑ Calculated: 15 kt = 15e9 grams of TNT-equivalent * 4.2e3 J/gram TNT-equivalent = 6.3e13 J
- ↑ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- 1 2 "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. Retrieved 12 November 2011.
- ↑ "The Gathering Storms". COSMOS. Retrieved 10 December 2011.
- 1 2 3 4 5 "Country Comparison :: Electricity – consumption". The World Factbook. CIA. Retrieved 11 December 2011.
- ↑ Calculated: 288.6e6 kWh * 3.60e6 J/kWh = 1.04e15 J
- ↑ Calculated: 4.2e9 J/ton of TNT-equivalent * 1e6 tons/megaton = 4.2e15 J/megaton of TNT-equivalent
- ↑ Calculated: 3.02e9 kWh * 3.60e6 J/kWh = 1.09e16 J
- ↑ Calculated: E = mc^2 = 1 kg * (2.998e8 m/s)^2 = 8.99e16 J
- ↑ "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Retrieved 9 December 2011.
- 1 2 3 The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter.
- ↑ "The Soviet Weapons Program – The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 4 November 2011.
- ↑ Calculated: 50e6 tons TNT-equivalent * 4.2e9 J/ton TNT-equivalent = 2.1e17 J
- ↑ Calculated: 115.6e9 kWh * 3.60e6 J/kWh = 4.16e17 J
- ↑ Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press. p. 144. ISBN 0-231-06667-8.
the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.
- ↑ Calculated: 200e6 tons of TNT equivalent * 4.2e9 J/ton of TNT equivalent = 8.4e17 J
- ↑ Calculated: 402e9 kWh * 3.60e6 J/kWh = 1.45e17 J
- ↑ Calculated: 3.741e12 kWh * 3.600e6 J/kWh = 1.347e19 J
- ↑ "United States". The World Factbook. USA. Retrieved 11 December 2011.
- ↑ Calculated: 3.953e12 kWh * 3.600e6 J/kWh = 1.423e19 J
- 1 2 "World". The World Factbook. CIA. Retrieved 11 December 2011.
- ↑ Calculated: 17.8e12 kWh * 3.60e6 J/kWh = 6.41e19 J
- ↑ Calculated: 18.95e12 kWh * 3.60e6 J/kWh = 6.82e19 J
- 1 2 3 4 5 "Statistical Review of World Energy 2011" (PDF). BP. Retrieved 9 December 2011.
- ↑ Calculated: 12002.4e6 tonnes of oil equivalent * 42e9 J/tonne of oil equivalent = 5.0e20 J
- 1 2 3 Global Uranium Resource
- ↑ U.S. Energy Information Administration, International Energy Generation
- ↑ U.S. EIA International Energy Outlook 2007.
- ↑ Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
- ↑ Calculated: "6608.9 trillion cubic feet" => 6608.9e3 billion cubic feet * 0.025 million tonnes of oil equivalent/billion cubic feet * 1e6 tonnes of oil equivalent/million tonnes of oil equivalent * 42e9 J/tonne of oil equivalent = 6.9e21 J
- ↑ Calculated: "188.8 thousand million tonnes" => 188.8e9 tonnes of oil * 42e9 J/tonne of oil = 7.9e21 J
- ↑ Calculated: 1.27e14 m^2 * 1370 W/m^2 * 86400 s/day = 1.5e22 J
- ↑ Calculated: 860938 million tonnes of coal => 860938e6 tonnes of coal * (1/1.5 tonne of oil equivalent / tonne of coal) * 42e9 J/tonne of oil equivalent = 2.4e22 J
- ↑ Calculated: natural gas + petroleum + coal = 6.9e21 J + 7.9e21 J + 2.4e22 J = 3.9e22 J
- ↑ "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center. 26 December 2004. Retrieved 9 December 2011.
- ↑ Bralower, Timothy J.; Charles K. Paull; R. Mark Leckie (April 1998). "The Cretaceous–Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows" (PDF). Geology 26 (4): 331–334. Bibcode:1998Geo....26..331B. doi:10.1130/0091-7613(1998)026<0331:tctbcc>2.3.co;2. Retrieved 6 June 2013.
The kinetic energy derived by the impact is estimated at ~5 × 10^30 ergs
- ↑ Calculated: 1.27e14 m^2 * 1370 W/m^2 * 86400 s/day = 5.5e24 J
- 1 2 3 "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. Retrieved 4 November 2011.
- ↑ "Moon Fact Sheet". NASA. Retrieved 16 December 2011.
- ↑ Calculated: KE = 1/2 * m * v^2. v = 1.023e3 m/s. m = 7.349e22 kg. KE = 1/2 * (7.349e22 kg) * (1.023e3 m/s)^2 = 3.845e28 J.
- ↑ "Moment of Inertia—Earth". Eric Weisstein's World of Physics. Retrieved 5 November 2011.
- ↑ Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. Retrieved 5 November 2011.
the Earth takes 23.9345 hours to rotate
- ↑ Calculated: E_rotational = 1/2 * I * w^2 = 1/2 * (8.0e37 kg m^2) * (2*pi/(23.9345 hour period * 3600 seconds/hour))^2 = 2.1e29 J
- ↑ Calculated: 3.8e26 J/s * 86400 s/day = 3.3e31 J
- ↑ "Earth's Gravitational Binding Energy". Retrieved 19 March 2012.
Variable Density Method: the Earth's gravitational binding energy is −1.711×10^32 J
- ↑ http://www.uwgb.edu/DutchS/pseudosc/flipaxis.htm
- ↑ Calculated: 3.8e26 J/s * 86400 s/day * 365.25 days/year = 1.2e34 J
- ↑ "Earth: Facts & Figures". Solar System Exploration. NASA. Retrieved 29 September 2011.
- ↑ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- ↑
Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272 - ↑ Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E.; Harrison, F. A.; Price, P. A.; Yost, S. A.; Diercks, A.; Goodrich, R. W.; Chaffee, F. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir" (PDF). The Astrophysical Journal 562: L55. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 * 10^50 erg"
- ↑ Calculated: 5e50 erg * 1e-7 J/erg = 5e43 J
- ↑ Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.
- ↑ Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; et al. (January 15, 2016). "ASASSN-15lh: A highly super-luminous supernova". Science 351 (6270): 257–260. arXiv:1507.03010. doi:10.1126/science.aac9613.
- ↑ url= http://arxiv.org/abs/1003.3885
- ↑ url= http://arxiv.org/abs/1004.2900
- ↑ url= http://arxiv.org/abs/0905.0690
- ↑ url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf
- ↑ url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt
- ↑ "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. Retrieved 9 December 2011.
With a power about 100 times that of the already astonishingly powerful "typical" supernova
- ↑ "Sun Fact Sheet". NASA. Retrieved 15 October 2011.
- ↑ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- ↑ Abbott, B.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters 116 (6). doi:10.1103/PhysRevLett.116.061102.
- ↑ "Fermi’s record breaking gamma-ray burst".
- ↑ url= http://arxiv.org/abs/1103.0630
- ↑ url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html
- ↑ Jim Brau. "The Milky Way Galaxy". Retrieved 4 November 2011.
- ↑ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- ↑ Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6.
- ↑ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- ↑ Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics 476 (2): 697–711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037.
- ↑ https://web.archive.org/web/20140819120709/http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/980211b.html
|
This article is issued from Wikipedia - version of the Friday, February 12, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.