Vinylacetylene

Vinylacetylene
Names
IUPAC name
but-1-en-3-yne
Other names
butenyne, 3-butene-1-yne
Identifiers
689-97-4 Yes
ChEBI CHEBI:48088 Yes
ChemSpider 12197 Yes
Jmol-3D images Image
PubChem 12720
Properties
C4H4
Molar mass 52.07456 g/mol
Appearance colourless gas
Boiling point 0 to 6 °C (32 to 43 °F; 273 to 279 K)
low
Hazards
Main hazards flammable
NFPA 704
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g., propane Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g., fluorine Special hazard W: Reacts with water in an unusual or dangerous manner. E.g., cesium, sodiumNFPA 704 four-colored diamond
4
2
3
Flash point < −5 °C (23 °F; 268 K)
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 Yes verify (what is: Yes/?)
Infobox references

Vinylacetylene is the organic compound with the formula C4H4. The colourless gas was once used in the polymer industry. It is composed of both alkyne and alkene groups.

Vinylacetylene is extremely dangerous because in high enough concentrations (typically > 30 mole percent, but pressure dependent) it can auto-detonate (explode without air being present) especially at elevated pressures, such as those seen in chemical plants processing C4 hydrocarbons.[1] An example of such an explosion occurred at a Union Carbide plant in Texas City in 1969.[2]

Synthesis

Vinylacetylene was first by Hofmann elimination of the related quaternary ammonium salt:[3]

[(CH3)3NCH2CH=CHCH2N(CH3)3]I2 → 2 [(CH3)3NH]I + HC≡C-CH=CH2

It is usually synthesized by dehydrohalogenation of 1,3-dichloro-2-butene.[4] It also arises via the dimerization of acetylene or dehydrogenation of 1,3-butadiene.

Application

At one time, chloroprene (2-chloro-1,3-butadiene), an industrially important monomer, was produced via the intermediacy of vinyl acetylene.[5] In this process, acetylene is dimerized to give vinyl acetylene, which is then combined with hydrogen chloride to give 4-chloro-1,2-butadiene via 1,4-addition. This allene derivative which, in the presence of cuprous chloride, rearranges to 2-chloro-1,3-butadiene:[6]

H2C=CH-CCH + HCl → H2ClC-CH=C=CH2
H2ClC-CH=C=CH2 → H2C=CH-CCl=CH2

References

  1. Ritzert and Berthol, Chem Ing Tech 45(3), 131-136, Feb 1973, reproduced in Viduari, J Chem Eng Data 20(3), 328-333, 1975.
  2. Carver, Chemical Process Hazards V, Paper F
  3. Richard Willstätter, Theodor Wirth "Über Vinyl-acetylen" Ber., volume 46, p. 535 (1913). doi:10.1002/cber.19130460172
  4. G. F. Hennion, Charles C. Price, and Thomas F. McKeon, Jr. (1963). "Monovinylacetylene". Org. Synth.; Coll. Vol. 4, p. 683
  5. Wallace H. Carothers, Ira Williams, Arnold M. Collins, and James E. Kirby (1937). "Acetylene Polymers and their Derivatives. II. A New Synthetic Rubber: Chloroprene and its Polymers". J. Am. Chem. Soc. 53 (11): 4203–4225. doi:10.1021/ja01362a042.
  6. Manfred Rossberg, Wilhelm Lendle, Gerhard Pfleiderer, Adolf Tögel, Eberhard-Ludwig Dreher, Ernst Langer, Heinz Rassaerts, Peter Kleinschmidt, Heinz Strack, Richard Cook, Uwe Beck, Karl-August Lipper, Theodore R. Torkelson, Eckhard Löser, Klaus K. Beutel, “Chlorinated Hydrocarbons” in Ullmann’s Encyclopedia of Industrial Chemistry, 2006 John Wiley-VCH: Weinheim.doi: 10.1002/14356007.a06_233.pub2