Vanadyl acetylacetonate

Vanadyl acetylacetonate
Names
IUPAC name
oxobis(2,4-pentanedionato)vanadium(IV)
Other names
VO(acac)2, VO(pd)2
Identifiers
3153-26-2 
PubChem 16217092
Properties
C10H14O5V
Molar mass 265.157 g/mol
Appearance blue-green
Density 1.50 g/cm3
Melting point 258 °C (496 °F; 531 K)
Boiling point 174 °C (345 °F; 447 K) (at 0.2 torr)
CHCl3, CH2Cl2, Benzene, CH3OH, CH3CH2OH
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 Yes verify (what is: Yes/?)
Infobox references

Vanadyl acetylacetonate is the chemical compound with the formula VO(C5H7O2)2. This blue-green coordination complex consists of the vanadyl group, VO2+, bound to two acetylacetonate anions, acac. Like other charge-neutral acetylacetonates, this complex is soluble in organic solvents.

Synthesis

The complex is prepared from vanadium(IV), e.g. vanadyl sulfate, or vanadium(V) precursors, such as vanadium pentoxide.[1] The equation for the redox reaction starting from the pentoxide can be described by this approximate equation:

2 V2O5 + 9 C5H8O2 → 4 VO(C5H7O2)2 + (CH3CO)2CO + 5 H2O

The compound is recrystallized from chloroform.

Structure and properties

The complex has a square pyramidal structure with a short V=O bond. This d1 compound is paramagnetic. Its optical spectrum exhibits two transitions. It is a weak Lewis acid, forming adducts with pyridine and methylamine.[1]

Applications

It is used in organic chemistry as a reagent in the epoxidation of allylic alcohols in combination with tert-butyl hydroperoxide (TBHP). The VO(acac)2-TBHP system exclusively epoxidizes geraniol at the allylic alcohol position. For comparison, another epoxidizing agent m-CPBA, reacts with both groups, creating the products in a two to one ratio, favoring the allylic position away from the alcohol. TBHP oxidizes VO(acac)2 to a vanadium(V) species which coordinates the alcohol of the substrate and the hydroperoxide.[2][3]

Biomedical aspects

Vanadyl(acac) exhibits insulin mimetic properties, in that in can stimulate the phosphorylation of protein kinase B (PKB/Akt) and glycogen synthase kinase-3 (GSK3).[4] It has also been shown inhibit tyrosine phosphatase(PTPase), PTPases such as PTP1B, which dephosphorylates insulin receptor beta subunit, thus increasing its phosphorylation, allowing for a prolonged activation of IRS-1, PKB, and GSK3, allowing them to exert their anti-diabetic properties.[4]

External links

References

  1. 1.0 1.1 Richard A. Rowe, Mark M. Jones (1957). "Vanadium(IV) Oxy(acetylacetonate)". Inorg. Synth. Inorganic Syntheses 5: 113–116. doi:10.1002/9780470132364.ch30. ISBN 978-0-470-13236-4.
  2. Takashi Itoh, Koichiro Jitsukawa, Kiyotomi Kaneda, Shiichiro Teranishi (1979). "Vanadium-catalyzed epoxidation of cyclic allylic alcohols. Stereoselectivity and stereocontrol mechanism". J. Am. Chem. Soc. 101 (1): 159–169. doi:10.1021/ja00495a027.
  3. Bryant E. Rossiter, Hsyueh-Liang Wu, Toshikazu Hirao "Vanadyl Bis(acetylacetonate)" in Encyclopedia of Reagents for Organic Synthesis John Wiley & Sons, 2007. doi:10.1002/047084289X.rv003m.pub2. Article Online Posting Date: March 15, 2007
  4. 4.0 4.1 Mohamad Z. Mehdi and Ashok K. Srivastava (2005). "Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: Mechanism of insulinomimesis". ABB 440 (2): 158–164. doi:10.1016/j.abb.2005.06.008. PMID 16055077.