Van der Waerden number

Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden number W(r,k).

Tables of Van der Waerden numbers

There are two cases in which the van der Waerden number is easy to compute: first, W(1,k)=k for any integer k, since one color produces only trivial colorings RRRRR...RRR (for the single color denoted R). Second, W(r,2)=r+1, since we may construct a coloring that avoids arithmetic progressions of length 2 by using each color at most once, but once we use a color twice, a length 2 arithmetic progression is formed (e.g., for r=3, the longest coloring we can get that avoids an arithmetic progression of length 2 is RGB). There are only a few other van der Waerden numbers that are known exactly. Bounds in this table taken from Rabung and Lotts[1] except where otherwise noted.

r\k 3 4 5 6 7 8
2 colors 9   35   178   1,132   > 3,703   > 11,495  
3 colors 27   293 [2]   > 2,173   > 11,191   > 48,811   > 238,400  
4 colors 76   > 1,048   > 17,705   > 91,331   > 420,217   > 2,388,317  
5 colors > 170   > 2,254   > 98,740   > 540,025   > 1,381,687   > 10,743,258  
6 colors > 223   > 9,778   > 98,748   > 816,981   > 7,465,909   > 57,445,718  

Van der Waerden numbers with r ≥ 2 are bounded above by

W(r,k)\le 2^{2^{r^{2^{2^{k+9}}}}}

as proved by Gowers.[3]

2-color van der Waerden numbers are bounded below by

p\cdot2^p\le W(2,p+1)

where p is prime, as proved by Berlekamp.[4]

One sometimes also writes w(r; k1, k2, ..., kr) to mean the smallest number w such that any coloring of the integers { 1, 2, ..., w } with r colors contains a progression of length ki of color i, for some i. Such numbers are called off-diagonal van der Waerden numbers. Thus W(r, k) = w(r; k, k, ..., k). Following is a list of some known van der Waerden numbers:

Known van der Waerden numbers
w(r;k1, k2, …, kr) Value Reference

w(2; 3,3)

9

Chvátal [5]

w(2; 3,4) 18 Chvátal [5]
w(2; 3,5) 22 Chvátal [5]
w(2; 3,6) 32 Chvátal [5]
w(2; 3,7) 46 Chvátal [5]
w(2; 3,8) 58 Beeler and O'Neil [6]
w(2; 3,9) 77 Beeler and O'Neil [6]
w(2; 3,10) 97 Beeler and O'Neil [6]
w(2; 3,11) 114 Landman, Robertson, and Culver [7]
w(2; 3,12) 135 Landman, Robertson, and Culver [7]
w(2; 3,13) 160 Landman, Robertson, and Culver [7]
w(2; 3,14) 186 Kouril [8]
w(2; 3,15) 218 Kouril [8]
w(2; 3,16) 238 Kouril [8]
w(2; 3,17) 279 Ahmed [9]
w(2; 3,18) 312 Ahmed [9]
w(2; 3,19) 349 Ahmed, Kullmann, and Snevily [10]
w(2; 4,4) 35 Chvátal [5]
w(2; 4,5) 55 Chvátal [5]
w(2; 4,6) 73 Beeler and O'Neil [6]
w(2; 4,7) 109 Beeler [11]
w(2; 4,8) 146 Kouril [8]
w(2; 4,9) 309 Ahmed [12]
w(2; 5,5) 178 Stevens and Shantaram [13]
w(2; 5,6) 206 Kouril [8]
w(2; 5,7) 260 Ahmed [14]
w(2; 6,6) 1132 Kouril and Paul [15]
w(3; 2, 3, 3) 14 Brown [16]
w(3; 2, 3, 4) 21 Brown [16]
w(3; 2, 3, 5) 32 Brown [16]
w(3; 2, 3, 6) 40 Brown [16]
w(3; 2, 3, 7) 55 Landman, Robertson, and Culver [7]
w(3; 2, 3, 8) 72 Kouril [8]
w(3; 2, 3, 9) 90 Ahmed [17]
w(3; 2, 3, 10) 108 Ahmed [17]
w(3; 2, 3, 11) 129 Ahmed [17]
w(3; 2, 3, 12) 150 Ahmed [17]
w(3; 2, 3, 13) 171 Ahmed [17]
w(3; 2, 3, 14) 202 Kouril [2]
w(3; 2, 4, 4) 40 Brown [16]
w(3; 2, 4, 5) 71 Brown [16]
w(3; 2, 4, 6) 83 Landman, Robertson, and Culver [7]
w(3; 2, 4, 7) 119 Kouril [8]
w(3; 2, 4, 8) 157 Kouril [2]
w(3; 2, 5, 5) 180 Ahmed [17]
w(3; 2, 5, 6) 246 Kouril [2]
w(3; 3, 3, 3) 27 Chvátal [5]
w(3; 3, 3, 4) 51 Beeler and O'Neil [6]
w(3; 3, 3, 5) 80 Landman, Robertson, and Culver [7]
w(3; 3, 3, 6) 107 Ahmed [12]
w(3; 3, 4, 4) 89 Landman, Robertson, and Culver [7]
w(3; 4, 4, 4) 293 Kouril [2]
w(4; 2, 2, 3, 3) 17 Brown [16]
w(4; 2, 2, 3, 4) 25 Brown [16]
w(4; 2, 2, 3, 5) 43 Brown [16]
w(4; 2, 2, 3, 6) 48 Landman, Robertson, and Culver [7]
w(4; 2, 2, 3, 7) 65 Landman, Robertson, and Culver [7]
w(4; 2, 2, 3, 8) 83 Ahmed [17]
w(4; 2, 2, 3, 9) 99 Ahmed [17]
w(4; 2, 2, 3, 10) 119 Ahmed [17]
w(4; 2, 2, 3, 11) 141 Schweitzer [18]
w(4; 2, 2, 4, 4) 53 Brown [16]
w(4; 2, 2, 4, 5) 75 Ahmed [17]
w(4; 2, 2, 4, 6) 93 Ahmed [17]
w(4; 2, 2, 4, 7) 143 Kouril [2]
w(4; 2, 3, 3, 3) 40 Brown [16]
w(4; 2, 3, 3, 4) 60 Landman, Robertson, and Culver [7]
w(4; 2, 3, 3, 5) 86 Ahmed [17]
w(4; 3, 3, 3, 3) 76 Beeler and O'Neil [6]
w(5; 2, 2, 2, 3, 3) 20 Landman, Robertson, and Culver [7]
w(5; 2, 2, 2, 3, 4) 29 Ahmed [17]
w(5; 2, 2, 2, 3, 5) 44 Ahmed [17]
w(5; 2, 2, 2, 3, 6) 56 Ahmed [17]
w(5; 2, 2, 2, 3, 7) 72 Ahmed [17]
w(5; 2, 2, 2, 3, 8) 88 Ahmed [17]
w(5; 2, 2, 2, 3, 9) 107 Kouril [2]
w(5; 2, 2, 2, 4, 4) 54 Ahmed [17]
w(5; 2, 2, 2, 4, 5) 79 Ahmed [17]
w(5; 2, 2, 2, 4, 6) 101 Kouril [2]
w(5; 2, 2, 3, 3, 3) 41 Landman, Robertson, and Culver [7]
w(5; 2, 2, 3, 3, 4) 63 Ahmed [17]
w(6; 2, 2, 2, 2, 3, 3) 21 Ahmed [17]
w(6; 2, 2, 2, 2, 3, 4) 33 Ahmed [17]
w(6; 2, 2, 2, 2, 3, 5) 50 Ahmed [17]
w(6; 2, 2, 2, 2, 3, 6) 60 Ahmed [17]
w(6; 2, 2, 2, 2, 4, 4) 56 Ahmed [17]
w(6; 2, 2, 2, 3, 3, 3) 42 Ahmed [17]
w(7; 2, 2, 2, 2, 2, 3, 3) 24 Ahmed [17]
w(7; 2, 2, 2, 2, 2, 3, 4) 36 Ahmed [17]
w(7; 2, 2, 2, 2, 2, 3, 5) 55 Ahmed [12]
w(7; 2, 2, 2, 2, 2, 3, 6) 65 Ahmed [14]
w(7; 2, 2, 2, 2, 2, 4, 4) 66 Ahmed [14]
w(7; 2, 2, 2, 2, 3, 3, 3) 45 Ahmed [14]
w(8; 2, 2, 2, 2, 2, 2, 3, 3) 25 Ahmed [17]
w(8; 2, 2, 2, 2, 2, 2, 3, 4) 40 Ahmed [12]
w(8; 2, 2, 2, 2, 2, 2, 3, 5) 61 Ahmed [14]
w(8; 2, 2, 2, 2, 2, 2, 3, 6) 71 Ahmed [14]
w(8; 2, 2, 2, 2, 2, 2, 4, 4) 67 Ahmed [14]
w(8; 2, 2, 2, 2, 2, 3, 3, 3) 49 Ahmed [14]
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 3) 28 Ahmed [17]
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 4) 42 Ahmed [14]
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 5) 65 Ahmed [14]
w(9; 2, 2, 2, 2, 2, 2, 3, 3, 3) 52 Ahmed [14]
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 31 Ahmed [14]
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) 45 Ahmed [14]
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 5) 70 Ahmed [14]
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 33 Ahmed [14]
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) 48 Ahmed [14]
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 35 Ahmed [14]
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) 52 Ahmed [14]
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 37 Ahmed [14]
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) 55 Ahmed [14]
w(14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 39 Ahmed [14]
w(15; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 42 Ahmed [14]
w(16; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 44 Ahmed [14]
w(17; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 46 Ahmed [14]
w(18; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 48 Ahmed [14]
w(19; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 50 Ahmed [14]
w(20; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) 51 Ahmed [14]

Van der Waerden numbers are primitive recursive, as proved by Shelah;[19] in fact he proved that they are (at most) on the fifth level \mathcal{E}^5 of the Grzegorczyk hierarchy.

See also

References

  1. John Rabung and Mark Lotts, http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i2p35/pdf
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Kouril, Michal (2012). "Computing the van der Waerden number W(3,4)=293". Integers 12: A46.
  3. Gowers, W. T. (2001). "A new proof of Szemerédi's theorem". Geometric and Functional Analysis 11: 465–588. doi:10.1007/s00039-001-0332-9.
  4. Berlekamp, E. (1968). "A construction for partitions which avoid long arithmetic progressions". Canadian Mathematical Bulletin 11: 409–414. doi:10.4153/CMB-1968-047-7.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chvátal, Vašek (1970). "Some unknown van der Waerden numbers". Combinatorial Structures and Their Applications (R.Guy et al.,eds.), New York.
  6. 6.0 6.1 6.2 6.3 6.4 6.5 Beeler, M.; O'Neil, P. (1979). "Some new van der Waerden numbers". Discrete Math. 28: 135–146. doi:10.1016/0012-365x(79)90090-6.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 Landman, B.; Robertson, A.; Culver, C. (2005). "Some New Exact van der Waerden Numbers". Integers 5 (2): A10.
  8. 8.0 8.1 8.2 8.3 8.4 8.5 8.6 Kouril, Michal (2006). "A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation". Ph. D. Thesis, University of Cincinnati, Engineering : Computer Science and Engineering.
  9. 9.0 9.1 Ahmed, Tanbir (2010). "Two new van der Waerden numbers w(2;3,17) and w(2;3,18)". Integers 10: 369–377, A32. doi:10.1515/integ.2010.032.
  10. Ahmed, Tanbir; Kullmann, Oliver; Snevily, Hunter. "On the van der Waerden numbers w(2;3,t)".
  11. Beeler, M. (1983). "A new van der Waerden number". Discrete Applied Math. 6: 207. doi:10.1016/0166-218x(83)90073-2.
  12. 12.0 12.1 12.2 12.3 Ahmed, Tanbir (2011). "On computation of exact van der Waerden numbers". Integers 11: A71.
  13. Stevens, R.; Shantaram, R. (1978). "Computer-generated van der Waerden partitions". Math. Computation 32: 635–636. doi:10.1090/s0025-5718-1978-0491468-x.
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 14.16 14.17 14.18 14.19 14.20 14.21 14.22 14.23 14.24 14.25 14.26 Ahmed, Tanbir (2013). "Some More Van der Waerden numbers". Journal of Integer Sequences 16: 13.4.4.
  15. Kouril, Michal; Paul, Jerome L. (2008). "The Van der Waerden Number W(2,6) is 1132". Experimental Mathematics 17 (1): 53–61. doi:10.1080/10586458.2008.10129025.
  16. 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10 Brown, T. C. (1974). "Some new van der Waerden numbers (preliminary report)". Notices of the American Mathematical Society 21: A–432.
  17. 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 17.10 17.11 17.12 17.13 17.14 17.15 17.16 17.17 17.18 17.19 17.20 17.21 17.22 17.23 17.24 17.25 17.26 17.27 17.28 17.29 Ahmed, Tanbir (2009). "Some new van der Waerden numbers and some van der Waerden-type numbers". Integers 9: A6. doi:10.1515/integ.2009.007.
  18. Schweitzer, Pascal (2009). "Problems of Unknown Complexity, Graph isomorphism and Ramsey theoretic numbers". Ph. D. Thesis, U. des Saarlandes.
  19. Shelah, S. (1988). "Primitive Recursive Bounds for van der Waerden Numbers". Journal of the American Mathematical Society 1 (3): 683–697. JSTOR 1990952.

Further reading

External links