Van der Waerden number
Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden number W(r,k).
Tables of Van der Waerden numbers
There are two cases in which the van der Waerden number is easy to compute: first, W(1,k)=k for any integer k, since one color produces only trivial colorings RRRRR...RRR (for the single color denoted R). Second, W(r,2)=r+1, since we may construct a coloring that avoids arithmetic progressions of length 2 by using each color at most once, but once we use a color twice, a length 2 arithmetic progression is formed (e.g., for r=3, the longest coloring we can get that avoids an arithmetic progression of length 2 is RGB). There are only a few other van der Waerden numbers that are known exactly. Bounds in this table taken from Rabung and Lotts[1] except where otherwise noted.
r\k 3 4 5 6 7 8 2 colors 9 35 178 1,132 > 3,703 > 11,495 3 colors 27 293 [2] > 2,173 > 11,191 > 48,811 > 238,400 4 colors 76 > 1,048 > 17,705 > 91,331 > 420,217 > 2,388,317 5 colors > 170 > 2,254 > 98,740 > 540,025 > 1,381,687 > 10,743,258 6 colors > 223 > 9,778 > 98,748 > 816,981 > 7,465,909 > 57,445,718
Van der Waerden numbers with r ≥ 2 are bounded above by
2-color van der Waerden numbers are bounded below by
where p is prime, as proved by Berlekamp.[4]
One sometimes also writes w(r; k1, k2, ..., kr) to mean the smallest number w such that any coloring of the integers { 1, 2, ..., w } with r colors contains a progression of length ki of color i, for some i. Such numbers are called off-diagonal van der Waerden numbers. Thus W(r, k) = w(r; k, k, ..., k). Following is a list of some known van der Waerden numbers:
w(r;k1, k2, …, kr) | Value | Reference |
---|---|---|
w(2; 3,3) |
9 |
Chvátal [5] |
w(2; 3,4) | 18 | Chvátal [5] |
w(2; 3,5) | 22 | Chvátal [5] |
w(2; 3,6) | 32 | Chvátal [5] |
w(2; 3,7) | 46 | Chvátal [5] |
w(2; 3,8) | 58 | Beeler and O'Neil [6] |
w(2; 3,9) | 77 | Beeler and O'Neil [6] |
w(2; 3,10) | 97 | Beeler and O'Neil [6] |
w(2; 3,11) | 114 | Landman, Robertson, and Culver [7] |
w(2; 3,12) | 135 | Landman, Robertson, and Culver [7] |
w(2; 3,13) | 160 | Landman, Robertson, and Culver [7] |
w(2; 3,14) | 186 | Kouril [8] |
w(2; 3,15) | 218 | Kouril [8] |
w(2; 3,16) | 238 | Kouril [8] |
w(2; 3,17) | 279 | Ahmed [9] |
w(2; 3,18) | 312 | Ahmed [9] |
w(2; 3,19) | 349 | Ahmed, Kullmann, and Snevily [10] |
w(2; 4,4) | 35 | Chvátal [5] |
w(2; 4,5) | 55 | Chvátal [5] |
w(2; 4,6) | 73 | Beeler and O'Neil [6] |
w(2; 4,7) | 109 | Beeler [11] |
w(2; 4,8) | 146 | Kouril [8] |
w(2; 4,9) | 309 | Ahmed [12] |
w(2; 5,5) | 178 | Stevens and Shantaram [13] |
w(2; 5,6) | 206 | Kouril [8] |
w(2; 5,7) | 260 | Ahmed [14] |
w(2; 6,6) | 1132 | Kouril and Paul [15] |
w(3; 2, 3, 3) | 14 | Brown [16] |
w(3; 2, 3, 4) | 21 | Brown [16] |
w(3; 2, 3, 5) | 32 | Brown [16] |
w(3; 2, 3, 6) | 40 | Brown [16] |
w(3; 2, 3, 7) | 55 | Landman, Robertson, and Culver [7] |
w(3; 2, 3, 8) | 72 | Kouril [8] |
w(3; 2, 3, 9) | 90 | Ahmed [17] |
w(3; 2, 3, 10) | 108 | Ahmed [17] |
w(3; 2, 3, 11) | 129 | Ahmed [17] |
w(3; 2, 3, 12) | 150 | Ahmed [17] |
w(3; 2, 3, 13) | 171 | Ahmed [17] |
w(3; 2, 3, 14) | 202 | Kouril [2] |
w(3; 2, 4, 4) | 40 | Brown [16] |
w(3; 2, 4, 5) | 71 | Brown [16] |
w(3; 2, 4, 6) | 83 | Landman, Robertson, and Culver [7] |
w(3; 2, 4, 7) | 119 | Kouril [8] |
w(3; 2, 4, 8) | 157 | Kouril [2] |
w(3; 2, 5, 5) | 180 | Ahmed [17] |
w(3; 2, 5, 6) | 246 | Kouril [2] |
w(3; 3, 3, 3) | 27 | Chvátal [5] |
w(3; 3, 3, 4) | 51 | Beeler and O'Neil [6] |
w(3; 3, 3, 5) | 80 | Landman, Robertson, and Culver [7] |
w(3; 3, 3, 6) | 107 | Ahmed [12] |
w(3; 3, 4, 4) | 89 | Landman, Robertson, and Culver [7] |
w(3; 4, 4, 4) | 293 | Kouril [2] |
w(4; 2, 2, 3, 3) | 17 | Brown [16] |
w(4; 2, 2, 3, 4) | 25 | Brown [16] |
w(4; 2, 2, 3, 5) | 43 | Brown [16] |
w(4; 2, 2, 3, 6) | 48 | Landman, Robertson, and Culver [7] |
w(4; 2, 2, 3, 7) | 65 | Landman, Robertson, and Culver [7] |
w(4; 2, 2, 3, 8) | 83 | Ahmed [17] |
w(4; 2, 2, 3, 9) | 99 | Ahmed [17] |
w(4; 2, 2, 3, 10) | 119 | Ahmed [17] |
w(4; 2, 2, 3, 11) | 141 | Schweitzer [18] |
w(4; 2, 2, 4, 4) | 53 | Brown [16] |
w(4; 2, 2, 4, 5) | 75 | Ahmed [17] |
w(4; 2, 2, 4, 6) | 93 | Ahmed [17] |
w(4; 2, 2, 4, 7) | 143 | Kouril [2] |
w(4; 2, 3, 3, 3) | 40 | Brown [16] |
w(4; 2, 3, 3, 4) | 60 | Landman, Robertson, and Culver [7] |
w(4; 2, 3, 3, 5) | 86 | Ahmed [17] |
w(4; 3, 3, 3, 3) | 76 | Beeler and O'Neil [6] |
w(5; 2, 2, 2, 3, 3) | 20 | Landman, Robertson, and Culver [7] |
w(5; 2, 2, 2, 3, 4) | 29 | Ahmed [17] |
w(5; 2, 2, 2, 3, 5) | 44 | Ahmed [17] |
w(5; 2, 2, 2, 3, 6) | 56 | Ahmed [17] |
w(5; 2, 2, 2, 3, 7) | 72 | Ahmed [17] |
w(5; 2, 2, 2, 3, 8) | 88 | Ahmed [17] |
w(5; 2, 2, 2, 3, 9) | 107 | Kouril [2] |
w(5; 2, 2, 2, 4, 4) | 54 | Ahmed [17] |
w(5; 2, 2, 2, 4, 5) | 79 | Ahmed [17] |
w(5; 2, 2, 2, 4, 6) | 101 | Kouril [2] |
w(5; 2, 2, 3, 3, 3) | 41 | Landman, Robertson, and Culver [7] |
w(5; 2, 2, 3, 3, 4) | 63 | Ahmed [17] |
w(6; 2, 2, 2, 2, 3, 3) | 21 | Ahmed [17] |
w(6; 2, 2, 2, 2, 3, 4) | 33 | Ahmed [17] |
w(6; 2, 2, 2, 2, 3, 5) | 50 | Ahmed [17] |
w(6; 2, 2, 2, 2, 3, 6) | 60 | Ahmed [17] |
w(6; 2, 2, 2, 2, 4, 4) | 56 | Ahmed [17] |
w(6; 2, 2, 2, 3, 3, 3) | 42 | Ahmed [17] |
w(7; 2, 2, 2, 2, 2, 3, 3) | 24 | Ahmed [17] |
w(7; 2, 2, 2, 2, 2, 3, 4) | 36 | Ahmed [17] |
w(7; 2, 2, 2, 2, 2, 3, 5) | 55 | Ahmed [12] |
w(7; 2, 2, 2, 2, 2, 3, 6) | 65 | Ahmed [14] |
w(7; 2, 2, 2, 2, 2, 4, 4) | 66 | Ahmed [14] |
w(7; 2, 2, 2, 2, 3, 3, 3) | 45 | Ahmed [14] |
w(8; 2, 2, 2, 2, 2, 2, 3, 3) | 25 | Ahmed [17] |
w(8; 2, 2, 2, 2, 2, 2, 3, 4) | 40 | Ahmed [12] |
w(8; 2, 2, 2, 2, 2, 2, 3, 5) | 61 | Ahmed [14] |
w(8; 2, 2, 2, 2, 2, 2, 3, 6) | 71 | Ahmed [14] |
w(8; 2, 2, 2, 2, 2, 2, 4, 4) | 67 | Ahmed [14] |
w(8; 2, 2, 2, 2, 2, 3, 3, 3) | 49 | Ahmed [14] |
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 3) | 28 | Ahmed [17] |
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 4) | 42 | Ahmed [14] |
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 5) | 65 | Ahmed [14] |
w(9; 2, 2, 2, 2, 2, 2, 3, 3, 3) | 52 | Ahmed [14] |
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 31 | Ahmed [14] |
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) | 45 | Ahmed [14] |
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 5) | 70 | Ahmed [14] |
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 33 | Ahmed [14] |
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) | 48 | Ahmed [14] |
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 35 | Ahmed [14] |
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) | 52 | Ahmed [14] |
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 37 | Ahmed [14] |
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4) | 55 | Ahmed [14] |
w(14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 39 | Ahmed [14] |
w(15; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 42 | Ahmed [14] |
w(16; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 44 | Ahmed [14] |
w(17; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 46 | Ahmed [14] |
w(18; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 48 | Ahmed [14] |
w(19; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 50 | Ahmed [14] |
w(20; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3) | 51 | Ahmed [14] |
Van der Waerden numbers are primitive recursive, as proved by Shelah;[19] in fact he proved that they are (at most) on the fifth level of the Grzegorczyk hierarchy.
See also
- Ramsey number
References
- ↑ John Rabung and Mark Lotts, http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i2p35/pdf
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Kouril, Michal (2012). "Computing the van der Waerden number W(3,4)=293". Integers 12: A46.
- ↑ Gowers, W. T. (2001). "A new proof of Szemerédi's theorem". Geometric and Functional Analysis 11: 465–588. doi:10.1007/s00039-001-0332-9.
- ↑ Berlekamp, E. (1968). "A construction for partitions which avoid long arithmetic progressions". Canadian Mathematical Bulletin 11: 409–414. doi:10.4153/CMB-1968-047-7.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Chvátal, Vašek (1970). "Some unknown van der Waerden numbers". Combinatorial Structures and Their Applications (R.Guy et al.,eds.), New York.
- ↑ 6.0 6.1 6.2 6.3 6.4 6.5 Beeler, M.; O'Neil, P. (1979). "Some new van der Waerden numbers". Discrete Math. 28: 135–146. doi:10.1016/0012-365x(79)90090-6.
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 Landman, B.; Robertson, A.; Culver, C. (2005). "Some New Exact van der Waerden Numbers". Integers 5 (2): A10.
- ↑ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 Kouril, Michal (2006). "A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation". Ph. D. Thesis, University of Cincinnati, Engineering : Computer Science and Engineering.
- ↑ 9.0 9.1 Ahmed, Tanbir (2010). "Two new van der Waerden numbers w(2;3,17) and w(2;3,18)". Integers 10: 369–377, A32. doi:10.1515/integ.2010.032.
- ↑ Ahmed, Tanbir; Kullmann, Oliver; Snevily, Hunter. "On the van der Waerden numbers w(2;3,t)".
- ↑ Beeler, M. (1983). "A new van der Waerden number". Discrete Applied Math. 6: 207. doi:10.1016/0166-218x(83)90073-2.
- ↑ 12.0 12.1 12.2 12.3 Ahmed, Tanbir (2011). "On computation of exact van der Waerden numbers". Integers 11: A71.
- ↑ Stevens, R.; Shantaram, R. (1978). "Computer-generated van der Waerden partitions". Math. Computation 32: 635–636. doi:10.1090/s0025-5718-1978-0491468-x.
- ↑ 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 14.16 14.17 14.18 14.19 14.20 14.21 14.22 14.23 14.24 14.25 14.26 Ahmed, Tanbir (2013). "Some More Van der Waerden numbers". Journal of Integer Sequences 16: 13.4.4.
- ↑ Kouril, Michal; Paul, Jerome L. (2008). "The Van der Waerden Number W(2,6) is 1132". Experimental Mathematics 17 (1): 53–61. doi:10.1080/10586458.2008.10129025.
- ↑ 16.0 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 16.10 Brown, T. C. (1974). "Some new van der Waerden numbers (preliminary report)". Notices of the American Mathematical Society 21: A–432.
- ↑ 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 17.10 17.11 17.12 17.13 17.14 17.15 17.16 17.17 17.18 17.19 17.20 17.21 17.22 17.23 17.24 17.25 17.26 17.27 17.28 17.29 Ahmed, Tanbir (2009). "Some new van der Waerden numbers and some van der Waerden-type numbers". Integers 9: A6. doi:10.1515/integ.2009.007.
- ↑ Schweitzer, Pascal (2009). "Problems of Unknown Complexity, Graph isomorphism and Ramsey theoretic numbers". Ph. D. Thesis, U. des Saarlandes.
- ↑ Shelah, S. (1988). "Primitive Recursive Bounds for van der Waerden Numbers". Journal of the American Mathematical Society 1 (3): 683–697. JSTOR 1990952.
Further reading
- Landman, Bruce; Aaron Robertson (Jan 2004). Ramsey Theory on the Integers. American Mathematical Society. p. 317.
- Herwig, P. R.; Heule, M. J. H.; van Lambalgen, P. M.; van Maaren, H. (2007). "A New Method to Construct Lower Bounds for Van der Waerden Numbers". The Electronic Journal of Combinatorics 14 (1).
External links
- O'Bryant, Kevin and Weisstein, Eric W., "Van der Waerden Number", MathWorld.
- Ahmed, Tanbir. "Known van der Waerden Number".