Van der Corput sequence

Illustration of the filling of the unit interval (horizontal axis) using the first n terms of the decimal Van der Corput sequence, for n from 0 to 999 (vertical axis)

A van der Corput sequence is the simplest one dimensional low-discrepancy sequence over the unit interval first published in 1935 by the Dutch mathematician J. G. van der Corput. It is constructed by reversing the base n representation of the sequence of natural numbers (1, 2, 3, …). For example, the decimal van der Corput sequence begins:

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 0.02, 0.12, 0.22, 0.32, …

whereas the binary van der Corput sequence can be written as:

0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, 0.1112, 0.00012, 0.10012, 0.01012, 0.11012, 0.00112, 0.10112, 0.01112, 0.11112, …

or, equivalently, as:

\tfrac{1}{2}, \tfrac{1}{4}, \tfrac{3}{4}, \tfrac{1}{8}, \tfrac{5}{8}, \tfrac{3}{8}, \tfrac{7}{8}, \tfrac{1}{16}, \tfrac{9}{16}, \tfrac{5}{16}, \tfrac{13}{16}, \tfrac{3}{16}, \tfrac{11}{16}, \tfrac{7}{16}, \tfrac{15}{16}, \ldots

The elements of the van der Corput sequence (in any base) form a dense set in the unit interval: for any real number in [0, 1] there exists a subsequence of the van der Corput sequence that converges towards that number. They are also equidistributed over the unit interval.

See also

References

External links