Unknotting problem

A tricky unknot diagram by Morwen Thistlethwaite
Another unknot

In mathematics, the unknotting problem is the problem of algorithmically recognizing the unknot, given some representation of a knot, e.g., a knot diagram. There are several types of unknotting algorithms. A major unresolved challenge is to determine if the problem admits a polynomial time algorithm, that is, whether the problem lies in the complexity class P.

Computational complexity

First steps toward determining the computational complexity were undertaken in proving that the problem is in larger complexity classes, which contain the class P. By using normal surfaces to describe the Seifert surfaces of a given knot, Hass, Lagarias & Pippenger (1999) showed that the unknotting problem is in the complexity class NP. Agol (2002) claimed that the problem of testing whether a knot has genus at least k (for a given number k) is in NP; this would imply that unknotting is in NP  co-NP, but remains unpublished. Hara, Tani & Yamamoto (2005) claimed the weaker result that unknotting is in AM  co-AM; however, later they retracted this claim.[1] A preprint released in 2011 by Greg Kuperberg, claimed that (assuming the generalized Riemann hypothesis) the unknotting problem is in co-NP.

The unknotting problem has the same computational complexity as testing whether an embedding of an undirected graph in Euclidean space is linkless.[2]

Unknotting algorithms

Several algorithms solving the unknotting problem are based on Haken's theory of normal surfaces:

Other approaches include:

Understanding the complexity of these algorithms is an active field of study.

See also

Notes

References

External links