Uniform integrability

Uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

Definition

Let  (X,\mathfrak{M}, \mu) be a positive measure space. A set \Phi\subset L^1(\mu) is called uniformly integrable if to each  \epsilon>0 there corresponds a  \delta>0 such that

 \left| \int_E f d\mu \right| < \epsilon

whenever f \in \Phi and \mu(E)<\delta.

Formal definition

The following definition applies.[1]

Related corollaries

The following results apply.

\lim_{K \to \infty} \sup_{X \in \mathcal{C}} E(|X|I_{|X|\geq K})=0.
X_n(\omega) = \begin{cases}
  n, & \omega\in (0,1/n), \\
  0 , & \text{otherwise.} \end{cases}
Clearly X_n\in L^1, and indeed E(|X_n|)=1\ , for all n. However,
E(|X_n|,|X_n|\ge K)= 1\ \text{ for all } n\ge K,
and comparing with definition 1, it is seen that the sequence is not uniformly integrable.
Non-UI sequence of RVs. The area under the strip is always equal to 1, but X_n \to 0 pointwise.
E(|X|)=E(|X|,|X|>K)+E(|X|,|X|<K)
and bounding each of the two, it can be seen that a uniformly integrable random variable is always bounded in L^1.
\ |X_n(\omega)| \le |Y(\omega)|,\ Y(\omega)\ge 0,\ E(Y)< \infty,
then the class \mathcal{C} of random variables \{X_n\} is uniformly integrable.

Relevant theorems

A class of random variables X_n \subset L^1(\mu) is uniformly integrable if and only if it is relatively compact for the weak topology \sigma(L^1,L^\infty).
The family \{X_{\alpha}\}_{\alpha\in\Alpha} \subset L^1(\mu) is uniformly integrable if and only if there exists a non-negative increasing convex function G(t) such that
\lim_{t \to \infty} \frac{G(t)}{t} = \infty and \sup_{\alpha} E(G(|X_{\alpha}|)) < \infty.

Relation to convergence of random variables

Citations

  1. Williams, David (1997). Probability with Martingales (Repr. ed.). Cambridge: Cambridge Univ. Press. pp. 126–132. ISBN 978-0-521-40605-5.
  2. Dellacherie, C. and Meyer, P.A. (1978). Probabilities and Potential, North-Holland Pub. Co, N. Y. (Chapter II, Theorem T25).
  3. Meyer, P.A. (1966). Probability and Potentials, Blaisdell Publishing Co, N. Y. (p.19, Theorem T22).
  4. Bogachev, Vladimir I. (2007). Measure Theory Volume I. Berlin Heidelberg: Springer-Verlag. p. 268. doi:10.1007/978-3-540-34514-5_4. ISBN 3-540-34513-2.

References