Uniform absolute-convergence

In mathematics, uniform absolute-convergence is a type of convergence for series of functions. Like absolute-convergence, it has the useful property that it is preserved when the order of summation is changed.

Motivation

A convergent series of numbers can often be reordered in such a way that the new series diverges. This is not possible for series of nonnegative numbers, however, so the notion of absolute-convergence precludes this phenomenon. When dealing with uniformly convergent series of functions, the same phenomenon occurs: the series can potentially be reordered into a non-uniformly convergent series, or a series which does not even converge pointwise. This is impossible for series of nonnegative functions, so the notion of uniform absolute-convergence can be used to rule out these possibilities.

Definition

Given a set X and functions f_n : X \to \mathbb{C} (or to any normed vector space), the series

\sum_{n=0}^{\infty} f_n(x)

is called uniformly absolutely-convergent if the series of nonnegative functions

\sum_{n=0}^{\infty} |f_n(x)|

is uniformly convergent.[1]

Distinctions

A series can be uniformly convergent and absolutely convergent without being uniformly absolutely-convergent. For example, if ƒn(x) = xn/n on the open interval (1,0), then the series Σfn(x) converges uniformly by comparison of the partial sums to those of Σ(1)n/n, and the series Σ|fn(x)| converges absolutely at each point by the geometric series test, but Σ|fn(x)| does not converge uniformly. Intuitively, this is because the absolute-convergence gets slower and slower as x approaches 1, where convergence holds but absolute convergence fails.

Generalizations

If a series of functions is uniformly absolutely-convergent on some neighborhood of each point of a topological space, it is locally uniformly absolutely-convergent. If a series is uniformly absolutely-convergent on all compact subsets of a topological space, it is compactly (uniformly) absolutely-convergent. If the topological space is locally compact, these notions are equivalent.

Properties

See also

References

  1. Kiyosi Itō (1987). Encyclopedic Dictionary of Mathematics, MIT Press.