Truncated 5-cell


5-cell

Truncated 5-cell

Bitruncated 5-cell
Schlegel diagrams centered on [3,3] (cells at opposite at [3,3])

In geometry, a truncated 5-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 5-cell.

There are two degrees of trunctions, including a bitruncation.

Truncated 5-cell

Truncated 5-cell

Schlegel diagram
(tetrahedron cells visible)
Type Uniform 4-polytope
Schläfli symbol t0,1{3,3,3}
Coxeter diagram
Cells 10 5 (3.3.3)
5 (3.6.6)
Faces 30 20 {3}
10 {6}
Edges 40
Vertices 20
Vertex figure
Irr. tetrahedron
Symmetry group A4, [3,3,3], order 120
Properties convex, isogonal
Uniform index 2 3 4

The truncated 5-cell, truncated pentachoron or truncated 4-simplex is bounded by 10 cells: 5 tetrahedra, and 5 truncated tetrahedra. Each vertex is surrounded by 3 truncated tetrahedra and one tetrahedron; the vertex figure is an elongated tetrahedron.

Construction

The truncated 5-cell may be constructed from the 5-cell by truncating its vertices at 1/3 the edge length. This truncates the 5 tetrahedral cells into truncated tetrahedra, and introduces 5 new tetrahedral cells positioned on the original vertices.

Structure

The truncated tetrahedra are joined to each other at their hexagonal faces, and to the tetrahedra at their triangular faces.

Projections

The tetrahedron-first parallel projection of the truncated 5-cell into 3-dimensional space has the following structure:

This layout of cells in projection is analogous to the layout of faces in the face-first projection of the truncated tetrahedron into 2-dimensional space. The truncated 5-cell is the 4-dimensional analogue of the truncated tetrahedron.

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Alternate names

Coordinates

The Cartesian coordinates for the vertices of an origin-centered truncated 5-cell having edge length 2 are:

\left( \frac{3}{\sqrt{10}},\  \sqrt{3 \over 2},\    \pm\sqrt{3},\         \pm1\right)
\left( \frac{3}{\sqrt{10}},\  \sqrt{3 \over 2},\    0,\                   \pm2\right)
\left( \frac{3}{\sqrt{10}},\  \frac{-1}{\sqrt{6}},\ \frac{2}{\sqrt{3}},\  \pm2\right)
\left( \frac{3}{\sqrt{10}},\  \frac{-1}{\sqrt{6}},\ \frac{4}{\sqrt{3}},\  0   \right)
\left( \frac{3}{\sqrt{10}},\  \frac{-5}{\sqrt{6}},\ \frac{1}{\sqrt{3}},\  \pm1\right)
\left( \frac{3}{\sqrt{10}},\  \frac{-5}{\sqrt{6}},\ \frac{-2}{\sqrt{3}},\ 0   \right)
\left( -\sqrt{2 \over 5},\    \sqrt{2 \over 3},\    \frac{2}{\sqrt{3}},\  \pm2\right)
\left( -\sqrt{2 \over 5},\    \sqrt{2 \over 3},\    \frac{-4}{\sqrt{3}},\ 0   \right)
\left( -\sqrt{2 \over 5},\    -\sqrt{6},\           0,\                   0   \right)
\left( \frac{-7}{\sqrt{10}},\ \frac{1}{\sqrt{6}},\  \frac{1}{\sqrt{3}},\  \pm1\right)
\left( \frac{-7}{\sqrt{10}},\ \frac{1}{\sqrt{6}},\  \frac{-2}{\sqrt{3}},\ 0   \right)
\left( \frac{-7}{\sqrt{10}},\ -\sqrt{3 \over 2},\   0,\                   0   \right)

More simply, the vertices of the truncated 5-cell can be constructed on a hyperplane in 5-space as permutations of (0,0,0,1,2) or of (0,1,2,2,2). These coordinates come from positive orthant facets of the truncated pentacross and bitruncated penteract respectively.

Bitruncated 5-cell


Schlegel diagram with alternate cells hidden.
Bitruncated 5-cell
Type Uniform 4-polytope
Schläfli symbol t1,2{3,3,3}
Coxeter diagram
or
Cells 10 (3.6.6)
Faces 40 20 {3}
20 {6}
Edges 60
Vertices 30
Vertex figure
(Tetragonal disphenoid)
Symmetry group Aut(A4), [[3,3,3]], order 240
Properties convex, isogonal isotoxal, isochoric
Uniform index 5 6 7

The bitruncated 5-cell (also called a bitruncated pentachoron, decachoron and 10-cell) is a 4-dimensional polytope, or 4-polytope, composed of 10 cells in the shape of truncated tetrahedra. Each hexagonal face of the truncated tetrahedra is joined in complementary orientation to the neighboring truncated tetrahedron. Each edge is shared by two hexagons and one triangle. Each vertex is surrounded by 4 truncated tetrahedral cells in a tetragonal disphenoid vertex figure.

The bitruncated 5-cell is the intersection of two pentachora in dual configuration. As such, it is also the intersection of a penteract with the hyperplane that bisects the penteract's long diagonal orthogonally. In this sense it is a 4-dimensional analog of the regular octahedron (intersection of regular tetrahedra in dual configuration / tesseract bisection on long diagonal) and the regular hexagon (equilateral triangles / cube). The 5-dimensional analog is the birectified 5-simplex, and the n-dimensional analog is the polytope whose Coxeter–Dynkin diagram is linear with rings on the middle one or two nodes.

The bitruncated 5-cell is one of the two non-regular uniform 4-polytopes which are cell-transitive. The other is the bitruncated 24-cell, which is composed of 48 truncated cubes.

Symmetry

This 4-polytope has a higher extended pentachoric symmetry (2×A4, [[3,3,3]]), doubled to order 240, because the element corresponding to any element of the underlying 5-cell can be exchanged with one of those corresponding to an element of its dual.

Alternative names

Images

orthographic projections
Ak
Coxeter plane
A4 A3 A2
Graph
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

stereographic projection of spherical 4-polytope
(centred on a hexagon face)

Net (polytope)

Coordinates

The Cartesian coordinates of an origin-centered bitruncated 5-cell having edge length 2 are:

\pm\left(\sqrt{\frac{5}{2}},\ \frac{5}{\sqrt{6}},\  \frac{2}{\sqrt{3}},\  0\right)
\pm\left(\sqrt{\frac{5}{2}},\ \frac{5}{\sqrt{6}},\  \frac{-1}{\sqrt{3}},\ \pm1\right)
\pm\left(\sqrt{\frac{5}{2}},\ \frac{1}{\sqrt{6}},\  \frac{4}{\sqrt{3}},\  0\right)
\pm\left(\sqrt{\frac{5}{2}},\ \frac{1}{\sqrt{6}},\  \frac{-2}{\sqrt{3}},\ \pm2\right)
\pm\left(\sqrt{\frac{5}{2}},\ -\sqrt{\frac{3}{2}},\ \pm\sqrt{3},\         \pm1\right)
\pm\left(\sqrt{\frac{5}{2}},\ -\sqrt{\frac{3}{2}},\ 0,\                   \pm2\right)
\pm\left(0,\                  2\sqrt{\frac{2}{3}},\ \frac{4}{\sqrt{3}},\  0\right)
\pm\left(0,\                  2\sqrt{\frac{2}{3}},\ \frac{-2}{\sqrt{3}},\ \pm2\right)

More simply, the vertices of the bitruncated 5-cell can be constructed on a hyperplane in 5-space as permutations of (0,0,1,2,2). These represent positive orthant facets of the bitruncated pentacross.

Another 5-space construction are all 20 permutations of (1,0,0,0,-1).

Related polytopes

Isotopic uniform truncated simplices
Dim. 2 3 4 5 6 7 8
Name t{3}
Hexagon
r{3,3}
Octahedron
2t{3,3,3}
Decachoron
2r{3,3,3,3}
Dodecateron
3t{3,3,3,3,3}
Tetradecapeton
3r{3,3,3,3,3,3}
Hexadecaexon
4t{3,3,3,3,3,3,3}
Octadecazetton
Coxeter
diagram
Images
Facets {3} t{3,3} r{3,3,3} 2t{3,3,3,3} 2r{3,3,3,3,3} 3t{3,3,3,3,3,3}

Related regular skew polyhedron

3}, with pairs of yellow triangles folded together into 4D and removed

The regular skew polyhedron, {6,4|3}, exists in 4-space with 4 hexagonal around each vertex, in a zig-zagging nonplanar vertex figure. These hexagonal faces can be seen on the bitruncated 5-cell, using all 60 edges and 20 vertices. The 20 triangular faces of the bitruncated 5-cell can be seen as removed. The dual regular skew polyhedron, {4,6|3}, is similarly related to the square faces of the runcinated 5-cell.

Related polytopes

These polytope are from a set of 9 uniform 4-polytope constructed from the [3,3,3] Coxeter group.

Name 5-cell truncated 5-cell rectified 5-cell cantellated 5-cell bitruncated 5-cell cantitruncated 5-cell runcinated 5-cell runcitruncated 5-cell omnitruncated 5-cell
Schläfli
symbol
{3,3,3}
3r{3,3,3}
t{3,3,3}
2t{3,3,3}
r{3,3,3}
2r{3,3,3}
rr{3,3,3}
r2r{3,3,3}
2t{3,3,3} tr{3,3,3}
t2r{3,3,3}
t0,3{3,3,3} t0,1,3{3,3,3}
t0,2,3{3,3,3}
t0,1,2,3{3,3,3}
Coxeter
diagram






Schlegel
diagram
A4
Coxeter plane
Graph
A3 Coxeter plane
Graph
A2 Coxeter plane
Graph

References