Trifluoromethylation

Trifluoromethylation in organic chemistry describes any organic reaction that introduces a trifluoromethyl group in an organic compound.[1][2][3][4] Trifluoromethylated compounds are of some importance in pharma and agrochemicals. Several notable pharmaceutical compounds have a trifluoromethyl group incorporated: fluoxetine, mefloquine, Leflunomide, nulitamide, dutasteride, bicalutamide, aprepitant, celecoxib, fipronil, fluazinam, penthiopyrad, picoxystrobin, fluridone, norflurazon, sorafenib and triflurazin. A relevant agrochemical is trifluralin The development of synthetic methods for adding trifluoromethyl groups to chemical compounds is actively pursued in academic research.

History

The first to investigate trifluoromethyl groups in relationship to biological activity was F. Lehmann in 1927.[5] An early review appeared in 1958.[6] An early synthetic method was developed by Frédéric Swarts in 1892,[7] based on antimony fluoride. In this reaction benzotrichloride was reacted with SbF3 to form PhCF2Cl and PhCF3. In the 1930s Kinetic Chemicals and IG Farben replaced SbF3 with HF. The McLoughlin-Thrower reaction (1968) is an early coupling reaction using iodofluoroalkanes, iodoaromatic compounds and copper.[8] In 1969 Kobayashi & Kumadaki adapted their protocol for trifluoromethylations.[9][10]

McLoughlin-Thrower reaction (1968)

Reagents

Trifluoromethyltrimethylsilane

Trifluoromethyltrimethylsilane or Ruppert's reagent is a reagent for introducing a trifluoromethyl group introduced in 1984 by Ingo Ruppert[11][12] and was modified by Prakash and Olah for carbonyl compounds in 1989.[13] In the same year Stahly modified the reaction for phenols and anilines.[14] An example is the trifluoromethylation of cyclohexanone in THF using tetrabutylammonium fluoride.[15]

Trifluoromethylation using

Trifluoromethyltrimethylsilane[15]

The substrates can be aryl halides.[16][17] Potassium (trifluoromethyl)trimethoxyborate for this purpose has been synthesised from B(OMe)3, CF3SiMe3, and KF.[18] Aryl functionalization via C-H activation has also been reported[19][20]

Sodium trifluoroacetate

Sodium trifluoroacetate as a reagent for trifluoromethylations was introduced by Matsui in 1981. In the original scope the substrate was an aromatic halide and the metal salt copper(I)iodide.[21][22]

Trifluoromethane

Fluoroform (CF3H) has been employed as a trifluoromethylation reagent for aldehydes in combination with a strong base[23]

Trifluoromethylation fluoroform folleas 1998[23]

Trifluoroiodomethane

Trifluoroiodomethane is a reagent in aromatic coupling reactions. It has also been used with enones, for example with chalcone, a reaction catalysed by diethyl zinc and Wilkinson's catalyst:[24]

Trifluoromethylation using diethyl zinc and Wilkinson's catalyst[24]

Trifluoromethyl Sulfone

Trifluoromethyl Sulfone (PhSO2CF3) and Trifluoromethyl Sulfoxide (PhSOCF3) can be used for trifluoromethylations of electrophiles[25]

Trifluoromethanesulfonyl chloride

Trifluoromethanesulfonyl chloride (or Triflyl Chloride, CF3SO2Cl) can be used in a highly efficient method to introduce a trifluoromethyl group to aromatic and heteroaromatic systems, including known pharmaceuticals such as Lipitor. The chemistry is general and mild, and uses a photoredox catalyst and a light source at room temperature.[26]

Sodium trifluoromethanesulfinate

Sodium trifluoromethanesulfinate (CF3SO2Na) as a trifluoromethylation reagent was introduced by Langlois in 1991.[27] The reaction requires t-butyl hydroperoxide and generally a metal and proceeds through a radical mechanism. The reagent has been applied with heterocyclic substrates[28]

Trifluorination Langlois reagent 2011[28]

Umemoto reagents

Umemoto reagents are (trifluoromethyl)dibenzoheterocyclic salts.[29][30]

Reaction types

Aromatic coupling reactions

In coupling reactions between aromatic compounds and metal-trifluoromethyl complexes the metal is usually copper, Pd and Ni are less prominent.[1] The reactions are stoichiometric or catalytic. In the McLoughlin-Thrower reaction (1962) iodobenzene reacts with trifluoroiodomethane (CF3I) and copper powder in dimethylformamide at 150 °C to trifluoromethylbenzene. The intermediate in this reaction type is a perfluoromethyl-metal complex.

A palladium acetate catalysed reaction described in 1982 used zinc powder with the main intermediate believed to be CF3ZnI with Pd(0) is the active catalyst.[31][32] The first copper catalysed coupling was reported in 2009 and based on an iodoarene, a trifluoromethylsilane, copper iodide and 1,10-phenanthroline.[33] Variations include another CF3 donor potassium (trifluoromethyl)trimethoxyborate,[34] the use of aryl boronic acids[35][36] or the use of a trifluoromethyl sulfonium salt[37] or the use of a trifluoromethylcopper(I) phenanthroline complex.[38] A catalytic palladium catalysed reaction was reported in 2010 using aryl halides, (trifluoromethyl)triethylsilane and allylpalladium chloride dimer[39]

Aromatic trifluoromethylation Kitazume 1982[31] Aromatic catalytic

trifluoromethylation Oishi 2009[33]

Radical trifluoromethylation

In radical trifluoromethylation the active species is the trifluoromethyl free radical.[40] Reagents such as bromotrifluoromethane and haloform have been used for this purpose[41][42][43] but in response to the Montreal Protocol alternatives such as trifluoroiodomethane have been developed as replacement.[44][45] One particular combination is CF3I / triethylborane[46][47] Other reagents that generate the CF3 radical are sodium trifluoromethanesulfinate and bis(trifluoroacetyl) peroxide.

Trifluoromethylation using CF3I and triethylborane.

The base is 2,6-lutidine[46]

In the CF3 radical the fluorine atom is an electron-withdrawing group via the inductive effect but also a weak pi donor through interaction of the fluorine lone pair with the radical center's SOMO. Compared to the methyl radical the CF3 radical is pyramidal (angle 17.8 °C) with a large inversion barrier, electrophilic and also more reactive. In reaction with styrene it is 440 times more reactive.[48] An early report (1949) describes the photochemical reaction of iodotrifluoromethane with ethylene to 3-iodo-1,1,1-trifluoropropane.[49] Reagents that have been reported for the direct trifluoromethylation of arenes are CF3I, CF3Br (thermal or photochemical), silver trifluoroacetate/TiO2 (photchemical) and sodium trifluoromethanesulfinate/Cu(OSO2CF3)2/tBuOOH.

Nucleophilic trifluoromethylation

In nucleophilic trifluoromethylation the active species is the CF3 anion.[50] In itself this anion is very unstable and collapses into a fluoride anion and difluorocarbene. The trifluoromethyl anion can be stabilized by removing electron density from the carbon atom for example by coordination to a metal like copper[51][52] or by creating a sigma bond to tin or silicon. Ruppert's reagent Me3SiCF3 is based on this last principle.[50] This reagent requires a fluoride initiator, usually a tetraalkylammonium fluoride such as TBAF. The CF3 anion can also be stabilised by trapping it by a strong electrophile that is used in excess. The reactivity of fluoroform in combination with a strong base such as t-BuOH with carbonyl compounds in DMF is an example.[50] Here CF3 and DMF form an hemiaminolate adduct ([Me2NCH(O)CF3]K).[53][54][55][56]

trifluoromethylation using methyl fluorosulfonyldifluoroacetate.

The intermediate is CF3Cu[51]

Electrophilic trifluoromethylation

In electrophilic trifluoromethylation the active trifluoromethyl donor group carries a positive charge.[29][57] Production of an CF3+ cation has been described as "extemely hard" [58] The first relevant reagent, a diaryl(trifluoromethyl) sulfonium salt (Ar2S+CF3SbF6) was developed in 1984 by reaction of an aryltrifluoromethyl sulfoxide 1 with SF3+SbF6 followed by reaction with an electron-rich arene.[59] The reagent was used in trifluoromethylation of a thiophenolate. S-(trifluoromethyl)dibenzothiophenium tetrafluoroborate is a commercially available and known trifluoromethylation reagent based on the same principle first documented in 1990.[60][61] In this type of compound sulfur has been replaced by oxygen, selenium and tellurium. Examples of substrates that have been investigated are pyridine, aniline, triphenylphosphine and the lithium salt of phenylacetylene.

Electrophilic Perfluoroalkylating Agents
5-(Trifluoromethyl)dibenzothiophenium
trifluoromethanesulfonate
5-(Trifluoromethyl)dibenzothiophenium tetraborate 3,3-Dimethyl-1-(trifluoromethyl)-1,2-benziodoxole

Another group of trifluoromethyl donors are hypervalent iodine(III)–CF3 reagents for example 3,3-dimethyl-1-(trifluoromethyl)-1,2-benziodoxole.[62][63][64][65] Substrates are thiols, alcohols, phosphines, (hetero) arenes,[66] unactivated olefins[67] and unsaturated carboxylic acids.[68]

Trifluoromethylation at a thiol group using hypervalent iodine [66]

The reaction mechanism of electrophilic trifluoromethylations has been described as controversial with polar substitution or single electron transfer as likely candidates [58]

Asymmetric trifluoromethylation

In asymmetric trifluoromethylation the trifluoromethyl group is added to the substrate in an enantioselective way.[69][70] Ruppert's reagent has been used for this purpose in an asymmetric induction approach to functionalise chiral amino acid derivates,[71] carbohydrates,[72] and steroids. Because Ruppert's reagent requires a tetraalkylammonium fluoride, chiral ammonium fluorides have been employed in asymmetric catalysis.[73][74] In the field of electrophilic trifluoromethylation an early contribution involved reaction of a metal enolate with a trifluoromethyl chalcogen salt in presence of a chiral boron catalyst[75]

Asymmetic trifluorination Iseki 1994[73] Asymmetic trifluorination Caron 2003[74]

More recent examples of highly enantioselective methods for the α-trifluoromethylation of carbonyls are available through enamine catalysis of aldehydes (photoredox[76] or iodonium[77]), copper catalysis of β-ketoesters,[78] and radical addition to zirconium enolates.[79]

References

  1. 1.0 1.1 Tomashenko, O. A.; Grushin, V. V. (2011). "Aromatic Trifluoromethylation with Metal Complexes". Chemical Reviews 111 (8): 4475. doi:10.1021/cr1004293.
  2. Furuya, T.; Kamlet, A. S.; Ritter, T. (2011). "Catalysis for fluorination and trifluoromethylation". Nature 473 (7348): 470. doi:10.1038/nature10108.
  3. Besset, T.; Schneider, C. D.; Cahard, D. (2012). "Tamed Arene and Heteroarene Trifluoromethylation". Angewandte Chemie International Edition 51 (21): 5048. doi:10.1002/anie.201201012.
  4. Alonso, C. N.; Martínez De Marigorta, E.; Rubiales, G.; Palacios, F. (2015). "Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives and Heteroarenes". Chemical Reviews 115 (4): 1847. doi:10.1021/cr500368h.
  5. Lehmann, F. "Chemical constitution and activity. Aromatic fluorine compounds." Arch. exp. Pathol. Pharmakol 130 (1928): 250-255.
  6. Yale, H. L. (1959). "The Trifluoromethyl Group in Medical Chemistry". Journal of Medicinal and Pharmaceutical Chemistry 1 (2): 121. doi:10.1021/jm50003a001.
  7. Swarts (1892). Acad. Roy. Belg 3 (24): 474. Missing or empty |title= (help)
  8. McLoughlin, V. C. R.; Thrower, J. (1969). "A route to fluoroalkyl-substituted aromatic compounds involving fluoroalkylcopper intermediates". Tetrahedron 25 (24): 5921. doi:10.1016/S0040-4020(01)83100-8.
  9. Kobayashi, Y.; Kumadaki, I. (1969). "Trifluoromethylation of aromatic compounds". Tetrahedron Letters 10 (47): 4095. doi:10.1016/S0040-4039(01)88624-X.
  10. Folléas, B. ̂T.; Marek, I.; Normant, J. F.; Saint-Jalmes, L. (2000). "Fluoroform: An Efficient Precursor for the Trifluoromethylation of Aldehydes". Tetrahedron 56 (2): 275. doi:10.1016/S0040-4020(99)00951-5.
  11. Ruppert, Ingo; Schlich, Klaus; Volbach, Wolfgang (January 1984). "Die ersten CF3-substituierten organyl(chlor)silane". Tetrahedron Letters 25 (21): 2195–2198. doi:10.1016/S0040-4039(01)80208-2.
  12. G. K. Surya Prakash; Andrei K. Yudin (1997). "Perfluoroalkylation with Organosilicon Reagents". Chem. Rev. 97 (3): 757–86. doi:10.1021/cr9408991. PMID 11848888.
  13. Prakash, G. K. Surya; Krishnamurti, Ramesh; Olah, George A. (January 1989). "Synthetic methods and reactions. 141. Fluoride-induced trifluoromethylation of carbonyl compounds with trifluoromethyltrimethylsilane (TMS-CF3). A trifluoromethide equivalent". Journal of the American Chemical Society 111 (1): 393–395. doi:10.1021/ja00183a073.
  14. Stahly, G. Patrick; Bell, Donald R. (June 1989). "A new method for synthesis of trifluoromethyl-substituted phenols and anilines". The Journal of Organic Chemistry 54 (12): 2873–2877. doi:10.1021/jo00273a020.
  15. 15.0 15.1 Ramaiah, Pichika; Krishnamurti, Ramesh; K. Surya Prakash, G. (1995). "1-TRIFLUOROMETHYL-1-CYCLOHEXANOL". Org. Synth. (72): 232. doi:10.15227/orgsyn.072.0232.
  16. Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. (2011). "A Broadly Applicable Copper Reagent for Trifluoromethylations and Perfluoroalkylations of Aryl Iodides and Bromides". Angew. Chem. 123 (16): 3877–3882. doi:10.1002/ange.201100633.
  17. Oishi, Masahiro; Kondo, Hideaki; Hideki, Hideki (2009). "Aromatic trifluoromethylation catalytic in copper". Amii Chem. Commun 2009 (14): 1909–1911. doi:10.1039/B823249K.
  18. Knauber, T.; Arikan, F.; Röschenthaler, G.-V.; Gooßen, L. J. (2011). "Copper-Catalyzed Trifluoromethylation of Aryl Iodides with Potassium (Trifluoromethyl)trimethoxyborate". Chem. Eur. J. 17 (9): 2689–2697. doi:10.1002/chem.201002749. PMID 21274956.
  19. Ye, Yingda; Shin; Lee, Hee; Melanie, S. (2011). "Silver-Mediated Trifluoromethylation of Arenes Using TMSCF3". Sanford Organic Letters 13 (20): 5464–5467. doi:10.1021/ol202174a.
  20. Hafner, A.; Bräse, S. (2012). "Ortho-Trifluoromethylation of Functionalized Aromatic Triazenes". Angew. Chem. Int. Ed. 51 (15): 3713–3715. doi:10.1002/anie.201107414.
  21. Matsui, Kiyohide; Tobita, Etsuko; Ando, Midori; Kondo, Kiyosi (1981). "A convenient trifluoromethylation of aromatic halides with sodium trifluoroacetate.". Chemistry Letters (12): 1719–1720. doi:10.1246/cl.1981.1719.
  22. Langlois, Bernard R.; Roques, Nicolas (October 2007). "Nucleophilic trifluoromethylation of aryl halides with methyl trifluoroacetate". Journal of Fluorine Chemistry 128 (10): 1318–1325. doi:10.1016/j.jfluchem.2007.08.001.
  23. 23.0 23.1 Folléas, Benoît; Marek, Ilan; Normant, Jean-F; Jalmes, Laurent Saint (May 1998). "Fluoroform: an efficient precursor for the trifluoromethylation of aldehydes". Tetrahedron Letters 39 (19): 2973–2976. doi:10.1016/S0040-4039(98)00391-8.
  24. 24.0 24.1 Sato, Kazuyuki; Omote, Masaaki; Ando, Akira; Kumadaki, Itsumaro (2006). "TRIFLUOROMETHYLATION AT THE a-POSITION OF b,b-UNSATURATED KETONES: 4-PHENYL-3-(TRIFLUOROMETHYL)BUTAN-2-ONE". Org. Synth. (83): 177. doi:10.15227/orgsyn.083.0177.
  25. Prakash, G. K. Surya; Hu, Jinbo; Olah, George A. (September 2003). "Alkoxide- and Hydroxide-Induced Nucleophilic Trifluoromethylation Using Trifluoromethyl Sulfone or Sulfoxide". Organic Letters 5 (18): 3253–3256. doi:10.1021/ol035045u.
  26. Nagib, David A.; MacMillan, David W. C. (8 December 2011). "Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis". Nature 480 (7376): 224–228. doi:10.1038/nature10647.
  27. Langlois, Bernard R.; Laurent, Eliane; Roidot, Nathalie (December 1991). "Trifluoromethylation of aromatic compounds with sodium trifluoromethanesulfinate under oxidative conditions.". Tetrahedron Letters 32 (51): 7525–7528. doi:10.1016/0040-4039(91)80524-A.
  28. 28.0 28.1 Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. (15 August 2011). "Innate C-H trifluoromethylation of heterocycles". Proceedings of the National Academy of Sciences 108 (35): 14411–14415. doi:10.1073/pnas.1109059108. PMC 3167544. PMID 21844378.
  29. 29.0 29.1 Zhang, Cai (11 July 2014). "Recent advances in trifluoromethylation of organic compounds using Umemoto's reagents". Organic & Biomolecular Chemistry 12 (34): 6580. doi:10.1039/C4OB00671B.
  30. Li, Huiqin (3 September 2012). "Umemoto's Reagent". Synlett 23 (15): 2289–2290. doi:10.1055/s-0032-1317176.
  31. 31.0 31.1 Kitazume, Tomoya; Ishikawa, Nobuo (1982). "PALLADIUM-CATALYZED CROSS-COUPLING REACTIONS BETWEEN ALLYL, VINYL OR ARYL HALIDE AND PERFLUOROALKYL IODIDE WITH ZINC AND ULTRASONIC IRRADIATION". Chemistry Letters 11 (1): 137–140. doi:10.1246/cl.1982.137.
  32. Kitazume, Tomoya; Ishikawa, Nobuo (1985). "Ultrasound-promoted selective perfluoroalkylation on the desired position of organic molecules". Journal of the American Chemical Society 107 (18): 5186–5191. doi:10.1021/ja00304a026.
  33. 33.0 33.1 Oishi, M.; Kondo, H.; Amii, H. (2009). "Aromatic trifluoromethylation catalytic in copper". Chem. Commun 2009 (14): 1909–1911. doi:10.1039/B823249K.
  34. Knauber, T.; Arikan, F.; Roschenthaler, G.-V.; Gooßen, L. J. (2011). "Copper-catalyzed trifluoromethylation of aryl iodides with potassium (trifluoromethyl) trimethoxyborate". Chem. Eur. J. 17 (9): 2689–2697. doi:10.1002/chem.201002749. PMID 21274956.
  35. Chu, L.; Qing, F.-L. (2010). "Copper-mediated oxidative trifluoromethylation of boronic acids". Org. Lett. 12 (21): 5060–5063. doi:10.1021/ol1023135. PMID 20923196.
  36. Senecal, Todd D.; Parsons, Andrew T.; Buchwald, Stephen L. (18 February 2011). "Room Temperature Aryl Trifluoromethylation via Copper-Mediated Oxidative Cross-Coupling". The Journal of Organic Chemistry 76 (4): 1174–1176. doi:10.1021/jo1023377.
  37. Cheng-, Cheng-Pan; Zhang, Pan; Wang, Ling; Prof, Chun-Tao; Chen, Yun; Zhang, Tao; Gu, Cheng; -Qing-, Chun Dr. Yu-; Ji-Chang, Xiao et al. et al. (2011). "Copper-mediated trifluoromethylation of heteroaromatic compounds by trifluoromethyl sulfonium salts". Angew. Chem. Int. Edn 50 (8): 1896–1900. doi:10.1002/anie.201006823.
  38. Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. (2011). "A broadly applicable copper reagent for trifluoromethylations and perfluoroalkylations of aryl iodides and bromides". Angew. Chem. Int. Edn 50 (16): 3793–3798. doi:10.1002/anie.201100633.
  39. Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. (24 June 2010). "The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides". Science 328 (5986): 1679–1681. doi:10.1126/science.1190524.
  40. Ma, Jun-An; Cahard, Dominique (September 2007). "Strategies for nucleophilic, electrophilic, and radical trifluoromethylations". Journal of Fluorine Chemistry 128 (9): 975–996. doi:10.1016/j.jfluchem.2007.04.026.
  41. Andrieux, Claude P.; Gelis, Laurence; Saveant, Jean-Michel (January 1989). "Unusual reactions resulting from the addition on olefins of trifluoromethyl radicals obtained from dissociative electron transfer between electrochemically generated aromatic anion radicals and trifluoromethyl bromide". Tetrahedron Letters 30 (37): 4961–4964. doi:10.1016/S0040-4039(01)80554-2.
  42. Uneyama, Kenji; Kitagawa, Kouichi; Kitagawa, Kouichi (January 1991). "Perfluoroalkyl-selenation of olefins". Tetrahedron Letters 32 (3): 375–378. doi:10.1016/S0040-4039(00)92632-7.
  43. Uneyama, Kenji; Kanai, Masatomi (December 1991). "Generation of perfluoroalkyl radicals at low temperature by tellurolate mediated electron transfer". Tetrahedron Letters 32 (50): 7425–7426. doi:10.1016/0040-4039(91)80124-O.
  44. Rasmusson, Gary H.; Brown, Ronald D.; Arth, Glen E. (March 1975). "Photocatalyzed reaction of trifluoromethyl iodide with steroidal dienones". The Journal of Organic Chemistry 40 (6): 672–675. doi:10.1021/jo00894a002.
  45. Lan-Hargest, Hsuan-Yin; Elliott, John D.; Eggleston, Drake S.; Metcalf, Brian W. (January 1987). "The photochemical rearrangement of a steroidal dienol triflate". Tetrahedron Letters 28 (52): 6557–6560. doi:10.1016/S0040-4039(00)96912-0.
  46. 46.0 46.1 Miura, Katsukiyo; Takeyama, Yoshihiro; Oshima, Koichiro; Utimoto, Kiitiro (1991). "Triethylborane Induced Perfluoroalkylation of Silyl Enol Ethers and Ketene Silyl Acetals with Perfluoroalkyl Iodides.". Bulletin of the Chemical Society of Japan 64 (5): 1542–1553. doi:10.1246/bcsj.64.1542.
  47. Miura, Katsukiyo; Taniguchi, Masahiko; Nozaki, Kyoko; Oshima, Koichiro; Utimoto, Kiitiro (January 1990). "Triethylborane induced perfluoroalkylation of silyl enol ethers or germyl enol ethers with perfluoroalkyl iodides". Tetrahedron Letters 31 (44): 6391–6394. doi:10.1016/S0040-4039(00)97073-4.
  48. Studer, Armido (3 September 2012). "A "Renaissance" in Radical Trifluoromethylation". Angewandte Chemie International Edition 51 (36): 8950–8958. doi:10.1002/anie.201202624.
  49. Haszeldine, R. N. (1949). "603. The reactions of fluorocarbon radicals. Part I. The reaction of iodotrifluoromethane with ethylene and tetrafluoroethylene". Journal of the Chemical Society (Resumed): 2856. doi:10.1039/JR9490002856.
  50. 50.0 50.1 50.2 Langlois, Bernard R.; Billard, Thierry; Roussel, Solveig (February 2005). "Nucleophilic trifluoromethylation". Journal of Fluorine Chemistry 126 (2): 173–179. doi:10.1016/j.jfluchem.2004.11.007.
  51. 51.0 51.1 Fei, Xiang-Shu; Tian, Wei-Sheng; Ding, Kai; Wang, Yun; Qing-Yun, Chen (2010). "NEW, CONVENIENT ROUTE FOR TRIFLUOROMETHYLATION OF STEROIDAL MOLECULES". Org. Synth. (87): 126. doi:10.15227/orgsyn.087.0126.
  52. Zanardi, Alessandro; Novikov, Maxim A.; Martin, Eddy; Benet-Buchholz, Jordi; Grushin, Vladimir V. (28 December 2011). "Direct Cupration of Fluoroform". Journal of the American Chemical Society 133 (51): 20901–20913. doi:10.1021/ja2081026.
  53. Shono, Tatsuya; Ishifune, Manabu; Okada, Toshio; Kashimura, Shigenori (January 1991). "Electroorganic chemistry. 130. A novel trifluoromethylation of aldehydes and ketones promoted by an electrogenerated base". The Journal of Organic Chemistry 56 (1): 2–4. doi:10.1021/jo00001a002.
  54. Barhdadi, Rachid; Troupel, Michel; Périchon, Jacques (1998). "Coupling of fluoroform with aldehydes using an electrogenerated base". Chemical Communications (12): 1251–1252. doi:10.1039/A801406J.
  55. Folléas, Benoît; Marek, Ilan; Normant, Jean-F; Jalmes, Laurent Saint (May 1998). "Fluoroform: an efficient precursor for the trifluoromethylation of aldehydes". Tetrahedron Letters 39 (19): 2973–2976. doi:10.1016/S0040-4039(98)00391-8.
  56. Large, Sylvie; Roques, Nicolas; Langlois, Bernard R. (December 2000). "Nucleophilic Trifluoromethylation of Carbonyl Compounds and Disulfides with Trifluoromethane and Silicon-Containing Bases". The Journal of Organic Chemistry 65 (26): 8848–8856. doi:10.1021/jo000150s.
  57. Umemoto, T. (1996). "Electrophilic Perfluoroalkylating Agents". Chemical Reviews 96 (5): 1757. doi:10.1021/cr941149u.
  58. 58.0 58.1 Barata-Vallejo, S. N.; Lantaño, B.; Postigo, A. (2014). "Recent Advances in Trifluoromethylation Reactions with Electrophilic Trifluoromethylating Reagents". Chemistry - A European Journal 20 (51): 16806. doi:10.1002/chem.201404005.
  59. Yagupolskii, L. M.; Kondratenko, N. V.; Timofeeva, G. N. J. Org. Chem. USSR 1984, 20, 103–106.
  60. Teruo, U.; Sumi, I. (1990). "Power-variable trifluoromethylating agents, (trifluoromethyl)dibenzothio- and -selenophenium salt system". Tetrahedron Letters 31 (25): 3579. doi:10.1016/S0040-4039(00)94447-2.
  61. Umemoto, T.; Ishihara, S. (1993). "Power-variable electrophilic trifluoromethylating agents. S-, Se-, and Te-(trifluoromethyl)dibenzothio-, -seleno-, and -tellurophenium salt system". Journal of the American Chemical Society 115 (6): 2156. doi:10.1021/ja00059a009.
  62. Eisenberger, P.; Gischig, S.; Togni, A. (2006). "Novel 10-I-3 Hypervalent Iodine-Based Compounds for Electrophilic Trifluoromethylation". Chemistry - A European Journal 12 (9): 2579. doi:10.1002/chem.200501052.
  63. Kieltsch, I.; Eisenberger, P.; Togni, A. (2007). "Mild Electrophilic Trifluoromethylation of Carbon- and Sulfur-Centered Nucleophiles by a Hypervalent Iodine(III)–CF3 Reagent". Angewandte Chemie International Edition 46 (5): 754. doi:10.1002/anie.200603497.
  64. Eisenberger, P.; Kieltsch, I.; Armanino, N.; Togni, A. (2008). "Mild electrophilic trifluoromethylation of secondary and primary aryl- and alkylphosphines using hypervalent iodine(iii)–CF3 reagents". Chemical Communications (13): 1575. doi:10.1039/B801424H.
  65. Stanek, K.; Koller, R.; Togni, A. (2008). "Reactivity of a 10-I-3 Hypervalent Iodine Trifluoromethylation Reagent with Phenols". The Journal of Organic Chemistry 73 (19): 7678. doi:10.1021/jo8014825.
  66. 66.0 66.1 "Preparation of a Trifluoromethyl Transfer Agent: 1-Trifluoromethyl-1,3-Dihydro-3,3-Dimethyl-1,2-Benziodoxole". Organic Syntheses 88: 168. 2011. doi:10.15227/orgsyn.088.0168.
  67. Parsons, A. T.; Buchwald, S. L. (2011). "Copper-Catalyzed Trifluoromethylation of Unactivated Olefins". Angewandte Chemie International Edition 50 (39): 9120. doi:10.1002/anie.201104053.
  68. He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. (2012). "Copper-Catalyzed Di- and Trifluoromethylation of α,β-Unsaturated Carboxylic Acids: A Protocol for Vinylic Fluoroalkylations". Angewandte Chemie International Edition 51 (16): 3944. doi:10.1002/anie.201200140.
  69. Ma, Jun-An; Cahard, Dominique (December 2004). "Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions". Chemical Reviews 104 (12): 6119–6146. doi:10.1021/cr030143e.
  70. Lin, Jin-Hong; Xiao, Ji-Chang (November 2014). "Recent advances in asymmetric fluorination and fluoroalkylation reactions via organocatalysis". Tetrahedron Letters 55 (45): 6147–6155. doi:10.1016/j.tetlet.2014.09.031.
  71. Skiles, Jerry W.; Fuchs, Victor; Miao, Clara; Sorcek, Ronald; Grozinger, Karl G.; Mauldin, Scott C.; Vitous, Jana; Mui, Philip W.; Jacober, Stephen (February 1992). "Inhibition of human leukocyte elastase (HLE) by N-substituted peptidyl trifluoromethyl ketones". Journal of Medicinal Chemistry 35 (4): 641–662. doi:10.1021/jm00082a005.
  72. Bansal, Romesh C.; Dean, Barbara; Hakomori, Sen-itiroh; Toyokuni, Tatsushi (1991). "Synthesis of trifluoromethyl analogue of L-fucose and 6-deoxy-D-altrose". Journal of the Chemical Society, Chemical Communications (12): 796. doi:10.1039/C39910000796.
  73. 73.0 73.1 Iseki, Katsuhiko; Nagai, Takabumi; Kobayashi, Yoshiro (May 1994). "Asymmetric trifluoromethylation of aldehydes and ketones with trifluoromethyltrimethylsilane catalyzed by chiral quaternary ammonium fluorides". Tetrahedron Letters 35 (19): 3137–3138. doi:10.1016/S0040-4039(00)76850-X.
  74. 74.0 74.1 Caron, Stéphane; Do, Nga; Arpin, Patrice; Larivée, Alexandre (August 2003). "Enantioselective Addition ofa Trifluoromethyl Anion to Aryl Ketones and Aldehydes". Synthesis 2003 (11): 1693–1698. doi:10.1055/s-2003-40889.
  75. Umemoto, Teruo; Adachi, Kenji (September 1994). "New Method for Trifluoromethylation of Enolate Anions and Applications to Regio-, Diastereo- and Enantioselective Trifluoromethylation". The Journal of Organic Chemistry 59 (19): 5692–5699. doi:10.1021/jo00098a030.
  76. Nagib, David A.; Scott, Mark E.; MacMillan, David W. C. (2009). "Enantioselective α-Trifluoromethylation of Aldehydes via Photoredox Organocatalysis". Journal of the American Chemical Society 131 (31): 10875–10877. doi:10.1021/ja9053338. PMC 3310169. PMID 19722670.
  77. Allen, Anna E.; MacMillan, David W. C. (2010). "The Productive Merger of Iodonium Salts and Organocatalysis: A Non-photolytic Approach to the Enantioselective α-Trifluoromethylation of Aldehydes". Journal of the American Chemical Society 132 (14): 4986–4987. doi:10.1021/ja100748y. PMID 20297822.
  78. Deng, Qing-Hai; Wadepohl, Hubert; Gade, Lutz H. (2012). "Highly Enantioselective Copper-Catalyzed Electrophilic Trifluoromethylation of β-Ketoesters". Journal of the American Chemical Society 134 (26): 10769–10772. doi:10.1021/ja3039773. PMID 22693950.
  79. Herrmann, Aaron T.; Smith, Lindsay L.; Zakarian, Armen (2012). "A Simple Method for Asymmetric Trifluoromethylation of-Acyl Oxazolidinones via Ru-Catalyzed Radical Addition to Zirconium Enolates". Journal of the American Chemical Society 134 (16): 6976–6979. doi:10.1021/ja302552e. PMID 22486383.