Transition metal thiolate complex

Transition metal thiolate complexes are metal complexes containing thiolate ligands. Thiolate is classified as a soft ligand, and metal thiolates are more common with soft metals. Most complexes contain other ligands in addition to thiolate, but many homoleptic complexes are known with only thiolate ligands. The amino acid cysteine has a thiol functional group, consequently many cofactors in proteins and enzymes feature cysteinate-metal cofactors.[1]

The zinc finger motif, which is found in transcription factors, is a metal thiolate complex.

Synthesis

Metal thiolate complexes are commonly prepared by reactions of metal complexes with appropriate organosulfur compounds, thiols (RSH), thiolates (RS), and disulfides (R2S2). The salt metathesis reaction route is most common. In this method, an alkali metal thiolate is treated with a transition metal halide to produce an alkali metal halide and the metal thiolate complex:

LiSC6H5 + CuI → Cu(SC6H5) + LiI

The thiol ligand can also effect protonolysis of anionic ligands, as illustrated by the formation of an organonickel thiolate from nickelocene and ethanethiol:

2 HSC2H5 + 2 Ni(C5H5)2 → [Ni(SC2H5)(C5H5)]2 + 2 C5H6
Thiomersal, a disinfectant, is a metal thiolate complex, being derived from Hg(II) and thiosalicylic acid.

Redox routes

Many thiolate complexes are prepared by redox reactions. Organic disulfides oxidize low valence metals, as illustrated by the oxidation of titanocene dicarbonyl:

(C5H5)2Ti(CO)2 + (C6H5S)2 → (C5H5)2Ti(SC6H5)2 + 2 CO

Some metal centers are oxidized by thiols, the coproduct being hydrogen gas:

Fe3(CO)12 + 2 C2H5SH → Fe2(SC2H5)2(CO)6 + Fe(CO)5 + CO + H2

These reactions probably proceed via oxidative addition of the thiol.

Thiols and especially thiolate salts are reducing agents. Consequently they induce redox reactions with certain transition metals. This phenomenon is illustrated by the synthesis of cuprous thiolates from cupric precursors:

4 HSC6H5 + 2 CuO → 2 Cu(SC6H5) + (C6H5S)2 + 2 H2O

Structure and bonding

Divalent sulfur exhibits bond angles approaching 90°. Such acute angles are also seen in the M-S-C angles of metal thiolates. Having filled p-orbitals of suitable symmetry, thiolates are pi-donor ligands. This property plays a role in the stabilization of Fe(IV) states in the enzyme cytochrome P450.

Reactions

Thiolates are relatively basic ligands, being derived from conjugate acids with pKa's of 6.5 (thiophenol) to 10.5 (butanethiol). Consequently, thiolate ligand often bridge pairs of metals. One example is Fe2(SCH3)2(CO)6. Thiolate ligands, especially when nonbridging, are susceptible to attack by electrophiles including acids, alkylating agents, and oxidants.

Structure of Fe2(SCH3)2(CO)6.

Occurrence and applications

Metal thiolate functionality is pervasive in metalloenzymes. Iron-sulfur proteins, blue copper proteins, and the zinc-containing enzyme liver alcohol dehydrogenase feature thiolate ligands. Commonly thiolate is ligand is provided from the cysteine residue. All molybdoproteins feature thiolates in the form of cysteinyl and/or molybdopterin.[2]

The copper site in plastocyanin features two imidazole, a thioether, and a thiolate ligand.

References

  1. Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5
  2. S. J. Lippard, J. M. Berg “Principles of Bioinorganic Chemistry” University Science Books: Mill Valley, CA; 1994. ISBN 0-935702-73-3.