Titanium nitrate
Names | |
---|---|
Other names
titanium tetranitrate, tetranitratotitanium | |
Identifiers | |
12372-56-4 | |
ChemSpider | 8123716 |
| |
Jmol-3D images | Image |
PubChem | 139314 |
| |
Properties | |
Ti(NO3)4 | |
Molar mass | 295.8866 g/mol |
Appearance | transparent needle shaped crystals. |
Density | 2.192 |
Melting point | 58.5 °C (137.3 °F; 331.6 K) |
Boiling point | decompose |
water, carbon tetrachloride | |
Related compounds | |
Related compounds |
hafnium nitrate, zirconium nitrate, titanium phosphate, titanium perchlorate |
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa) | |
Infobox references | |
Titanium nitrate is a compound of titanium with the nitrate group with formula Ti(NO3)4. There are basic and hydrated compounds. Titanium oxynitrate is also known as titanyl nitrate, TiO(NO3)2. Anhydrous titanium nitrate is a volatile solid at room temperature. It is in the form of covalently bound molecules.
Preparation
Concentrated nitric acid dissolves titanium dioxide to yield hydrated titanium nitrate.[1]
The anhydrous form can be made from the hydrate by treating it with dinitrogen pentoxide.[2] Older ways to make it are by treating titanium tetrachloride with dinitrogen pentoxide or dinitrogen tetroxide.[3] It seems to have first been made by Hans Reihlen and Andreas Hake.[4]
Properties
Anhydrous titanium nitrate in the solid form is a colourless needle shaped[3] monoclinic crystal, with a unit cell with dimensions a=7.80 b=13.57 c=10.34 Å and β=125·0°.[5] Unit volume is 896.52 Å3 and density is 2.192.[6] Each unit cell has four of the molecules.[5] The space group is P21/C. Each molecule has nitrate arranged in a flattened tetrahedral arrangement around a titanium atom in a D2d symmetry. Each nitrate group is bidentate, attached via two oxygen atoms to the titanium. The oxygen atoms attached to the titanium have longer bonds compared to nitrate of 1·29 Å, and the outer oxygen to nitrogen bond-length is shortened to 1·185 Å.[7]
The molecules have a D2d symmetry. Each coplanar pair of nitrate groups are 130° apart.[8]
The infrared spectrum shows a vibration absorption line at 1635 cm−1.[5] This line is due to the outer N=O bonds.[8]
Anhydrous titanium nitrate is quite volatile, able to sublime at 30 °C at a pressure of 10−4 mm Hg.[9] Its melting point is 58.5 °C.[2]
Anhydrous titanium nitrate can be dissolved in silicon tetrachloride[10] or carbon tetrachloride.[3] In carbon tetrachloride it is dissolved to the extent of 0.1 mol per liter at 10 °C.[11]
The bond between the nitrate groups and titanium atom is covalent with little ionic nature. Electrons are partially withdrawn from the terminal oxygen atom of the nitrate towards the oxygen atoms against the titanium.[7]
Reactions
Titanium nitrate and other nitrates with bidentate bonds to the central atom are very reactive as strong oxidisers.[8] Unidentate connected nitrate molecules are not nearly as reactive, and this suggests that the NO3 group detaches from the central atom as a radical.[8]
Titanium nitrate reacts with organic compounds such as hydrocarbons and many substituted hydrocarbons to do nitration or oxidation. Titanium nitrate adds nitrate groups to benzene, nitrobenzene, toluene, and chlorobenzenes simply by mixing the substances.[9] Reactions are quite fast, taking about ten seconds.[9] Titanium nitrate also reacts with n-dodecane,[11] p-dichlorobenzene, anisole, biphenyl,[11] mesitylene, ethylbenzene and tert-butyl-benzene when dissolved in carbon tetrachloride.[12]
Anhydrous titanium nitrate is very hygroscopic, absorbing water from the atmosphere.[9]
Titanium III (Ti3+) reduces nitrate ions to ammonium, so titanium (III) nitrate does not exist.[13]
When titanium nitrate vapour is heated on a silicon surface, titanium dioxide is formed, so that it could be used as a chemical vapour deposition material.[14] Surface decomposition can take place as low as 184 °C, but also at temperatures from 200 to 500 °C. The titanium dioxide produced this way has potential as capacitor dielectric as it has a high dielectric constant, up to 30.[15]
name | formula | MW | melt | boil | CAS |
---|---|---|---|---|---|
anhydrous | Ti(NO3)4 | 295.8866 | 57-59 | 40 | 12372-56-4 |
tetrahydrate | Ti(NO3)4.4(H2O) |
References
- ↑ Wiberg, Egon; Wiberg, Nils (2001). Inorganic Chemistry. Academic Press. p. 1331. ISBN 9780123526519. Retrieved 28 September 2014.
- ↑ 2.0 2.1 Field, B. O.; C. J. Hardy (1963). "1006. Volatile tetranitratotitanium(IV): preparation, infrared spectrum, and reaction with saturated hydrocarbons". Journal of the Chemical Society (Resumed): 5278. doi:10.1039/JR9630005278. ISSN 0368-1769.
- ↑ 3.0 3.1 3.2 Schmeisser, Martin (1955). "Die Chemie der anorganischen Acylnitrate (ein Problem des Nitrylchlorids) und Acylperchlorate (ein Problem des Dichlorhexoxyds)". Angewandte Chemie (in German) 67 (17–18): 493–501. doi:10.1002/ange.19550671708. ISSN 0044-8249.
- ↑ Reihlen, Hans; Andreas Hake (1927). "Über die Konstitution des N2O4 und N2O3 und die Additionsverbindungen von Nitro- und Nitrosokörpern an Zinn- und Titantetrachlorid". Justus Liebig's Annalen der Chemie (in German) 452 (1): 47–67. doi:10.1002/jlac.19274520104. ISSN 0075-4617.
- ↑ 5.0 5.1 5.2 Garner, C. D.; S. C. Wallwork (1966). "The crystal structures of anhydrous nitrates and their complexes. Part III. Titanium(IV) nitrate". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1496. doi:10.1039/J19660001496. ISSN 0022-4944.
- ↑ "Titanium(iv) nitrate (Ti(NO3)4)". Retrieved 27 September 2014.
- ↑ 7.0 7.1 Garner, C. David; Ian H. Hillier; Martyn F. Guest (1975). "Ab initio self-consistent field molecular-orbital calculation of the ground state of tetranitratotitanium(IV); comments on the reactivity of anhydrous metal nitrates". Journal of the Chemical Society, Dalton Transactions (19): 1934. doi:10.1039/DT9750001934. ISSN 0300-9246.
- ↑ 8.0 8.1 8.2 8.3 C. C. Addison C. D. Garner W. B. Simpson D Sutton, S. C. Wallwork (November 1964). "The Structure and Reactivity of Titanium(iv) Nitrate; and NO3 Radical Mechanism for Oxidation by Bidentate Nitrate Groups". Proceedings Chemical Society: 367.
- ↑ 9.0 9.1 9.2 9.3 Amos, D.W.; D.A. Baines, G.W. Flewett (1973). "Nitration by titanium (IV) nitrate". Tetrahedron Letters 14 (34): 3191–3194. doi:10.1016/S0040-4039(00)79808-X. ISSN 0040-4039.
- ↑ Amos, D.W.; G.W. Flewett (1974). "Raman spectra of titanium (IV) and tin (IV) nitrates". Spectrochimica Acta Part A: Molecular Spectroscopy 30 (2): 453–461. Bibcode:1974AcSpA..30..453A. doi:10.1016/0584-8539(74)80085-1. ISSN 0584-8539.
- ↑ 11.0 11.1 11.2 Coombes, Robert G.; Leslie W. Russell (1974). "Nitration of aromatic compounds by tetranitratotitanium(IV) in carbon tetrachloride solution". Journal of the Chemical Society, Perkin Transactions 2 (7): 830. doi:10.1039/P29740000830. ISSN 0300-9580.
- ↑ Schofield, Kenneth (1980). Aromatic Nitration. CUP Archive. pp. 97–98. ISBN 9780521233620. Retrieved 27 September 2014.
- ↑ Burns, Eugene.A (1962). "Reduction of ammonium nitrate with titanium(III) chloride in acid media". Analytica Chimica Acta 26: 143–147. doi:10.1016/s0003-2670(00)88360-9. ISSN 0003-2670.
- ↑ Allendorf, Mark Donald (1999-01-01). "Titanium Oxide CVD from Titanium (IV) Nitrate ...". Proceedings of the Symposium on Fundamental Gas-Phase and Surface Chemistry of Vapor-Phase Materials Synthesis. The Electrochemical Society. pp. 395–397. ISBN 9781566772174. Retrieved 27 September 2014.
- ↑ Gilmer, David Christopher; W. L. Gladfelter, D. G. Colombo, C. J. Taylor, J. Roberts, S. A. Campbell, H.-S. Kim, G. D. Wilk, M. A. Gribelyuk; Colombo, D. G.; Taylor, C. J.; Roberts, J.; Campbell, S. A.; Kim, H.-S.; Wilk, G. D.; Gribelyuk, M. A. (2011). "Low Temperature Chemical Vapor Deposition of Titanium Dioxide Thin Films Using Tetranitratotitanium (IV)". MRS Proceedings 495. doi:10.1557/PROC-495-45. ISSN 1946-4274.
Other reading
- Partington, J. R.; A. L. Whynes (1949). "660. Reactions of nitrosyl chloride. Part II". Journal of the Chemical Society (Resumed): 3135. doi:10.1039/JR9490003135. ISSN 0368-1769.
- Dauerman, L.; G.E. Salser (1973). "Mass spectra of covalent inorganic nitrates: copper(II) nitrate and titanium(IV) nitrate". Journal of Inorganic and Nuclear Chemistry 35 (1): 304–306. doi:10.1016/0022-1902(73)80643-8. ISSN 0022-1902.
Salts and the ester of the Nitrate ion | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HNO3 | He | ||||||||||||||||||
LiNO3 | Be(NO3)2 | B(NO3)4− | RONO2 | NO3− NH4NO3 |
O | FNO3 | Ne | ||||||||||||
NaNO3 | Mg(NO3)2 | Al(NO3)3 | Si | P | S | ClONO2 | Ar | ||||||||||||
KNO3 | Ca(NO3)2 | Sc(NO3)3 | Ti(NO3)4 | VO(NO3)3 | Cr(NO3)3 | Mn(NO3)2 | Fe(NO3)3 | Co(NO3)2, Co(NO3)3 |
Ni(NO3)2 | Cu(NO3)2 | Zn(NO3)2 | Ga(NO3)3 | Ge | As | Se | Br | Kr | ||
RbNO3 | Sr(NO3)2 | Y | Zr(NO3)4 | Nb | Mo | Tc | Ru | Rh | Pd(NO3)2 | AgNO3 | Cd(NO3)2 | In | Sn | Sb | Te | I | XeFNO3 | ||
CsNO3 | Ba(NO3)2 | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg2(NO3)2, Hg(NO3)2 |
Tl(NO3)3 | Pb(NO3)2 | Bi(NO3)3 | Po | At | Rn | |||
Fr | Ra | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Fl | Uup | Lv | Uus | Uuo | |||
↓ | |||||||||||||||||||
La | Ce(NO3)x | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||||
Ac | Th | Pa | UO2(NO3)2 | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |