Teichmüller–Tukey lemma
In mathematics, the Teichmüller–Tukey lemma (sometimes named just Tukey's lemma,), named after John Tukey and Oswald Teichmüller, states that every nonempty collection of finite character has a maximal element with respect to inclusion. It is equivalent to the Axiom of Choice.
Definitions
A family of sets is of finite character provided it has the following properties:
- For each , every finite subset of belongs to .
- If every finite subset of a given set belongs to , then belongs to .
Applications
In linear algebra, the lemma may be used to show the existence of a basis. Let V be a vector space. Consider the collection of linearly independent sets of vectors. This is a collection of finite character Thus, a maximal set exists, which must then span V and be a basis for V.