Tamari lattice

Tamari lattice of order 4

In mathematics, a Tamari lattice, introduced by Dov Tamari (1962), is a partially ordered set in which the elements consist of different ways of grouping a sequence of objects into pairs using parentheses; for instance, for a sequence of four objects abcd, the five possible groupings are ((ab)c)d, (ab)(cd), (a(bc))d, a((bc)d), and a(b(cd)). Each grouping describes a different order in which the objects may be combined by a binary operation; in the Tamari lattice, one grouping is ordered before another if the second grouping may be obtained from the first by only rightward applications of the associative law (xy)z = x(yz). For instance, applying this law with x = a, y = bc, and z = d gives the expansion (a(bc))d = a((bc)d), so in the ordering of the Tamari lattice (a(bc))d  a((bc)d).

In this partial order, any two groupings g1 and g2 have a greatest common predecessor, the meet g1  g2, and a least common successor, the join g1  g2. Thus, the Tamari lattice has the structure of a lattice. The Hasse diagram of this lattice is isomorphic to the graph of vertices and edges of an associahedron. The number of elements in a Tamari lattice for a sequence of n + 1 objects is the nth Catalan number.

The Tamari lattice can also be described in several other equivalent ways:

Notation

The Tamari lattice of the Cn groupings of n+1 objects is called Tn, but the corresponding associahedron is called Kn+1.

In The Art of Computer Programming T4 is called the Tamari lattice of order 4 and its Hasse diagram K5 the associahedron of order 4.

References