TAF1

TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 250kDa

PDB rendering based on 1eqf.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
SymbolsTAF1 ; BA2R; CCG1; CCGS; DYT3; DYT3/TAF1; KAT4; N-TAF1; NSCL2; OF; P250; TAF(II)250; TAF2A; TAFII-250; TAFII250; XDP
External IDsOMIM: 313650 MGI: 1336878 HomoloGene: 37942 IUPHAR: 2231 GeneCards: TAF1 Gene
EC number2.3.1.48, 2.7.11.1
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez6872270627
EnsemblENSG00000147133ENSMUSG00000031314
UniProtP21675Q80UV9
RefSeq (mRNA)NM_001286074NM_001081008
RefSeq (protein)NP_001273003NP_001074477
Location (UCSC)Chr X:
70.59 – 70.75 Mb
Chr X:
101.53 – 101.6 Mb
PubMed search

Transcription initiation factor TFIID subunit 1, also known as transcription initiation factor TFIID 250 kDa subunit (TAFII-250) or TBP-associated factor 250 kDa (p250), is a protein that in humans is encoded by the TAF1 gene.[1][2]

Function

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is the basal transcription factor TFIID, which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes the largest subunit of TFIID. This subunit binds to core promoter sequences encompassing the transcription start site. It also binds to activators and other transcriptional regulators, and these interactions affect the rate of transcription initiation. This subunit contains two independent protein kinase domains at the N and C-terminals, but also possesses acetyltransferase activity and can act as a ubiquitin-activating/conjugating enzyme. Two transcripts encoding different isoforms have been identified for this gene.[1]

Clinical significance

A mutation in TAF1 was identifed that contributes to a phenotype with severe intellectual disability (ID), a characteristic intergluteal crease, and very distinctive facial features, including a broad, upturned nose, sagging cheeks, downward sloping palpebral fissures, prominent periorbital ridges, deep-set eyes, relative hypertelorism, thin upper lip, a high-arched palate, prominent ears with thickened helices, and a pointed chin [3][4] This is a non-synonymous change in TAF1 that results in an isoleucine (hydrophobic) to threonine (polar) change on the 1337th amino acid residue in the protein (NP_001273003.1). Two other mutations were reported in TAF1 in two families with intellectual disability, although further clinical details were not reported. [5]

Interactions

TAF1 has been shown to interact with:

See also


References

  1. 1.0 1.1 "Entrez Gene: TAF1 TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 250kDa".
  2. Sekiguchi T, Yoshida MC, Sekiguchi M, Nishimoto T (April 1987). "Isolation of a human X chromosome-linked gene essential for progression from G1 to S phase of the cell cycle". Exp. Cell Res. 169 (2): 395–407. doi:10.1016/0014-4827(87)90200-X. PMID 3556424.
  3. He M, Person TN, Hebbring SJ, Heinzen E, Ye Z, Schrodi SJ et al. (Jan 2015). "SeqHBase: a big data toolset for family based sequencing data analysis". Journal of Medical Genetics. doi:10.1136/jmedgenet-2014-102907. PMID 25587064.
  4. "A variant in TAF1 is associated with a new syndrome with severe intellectual disability and characteristic dysmorphic features".
  5. Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer AP et al. (Feb 2015). "X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes". Molecular Psychiatry. doi:10.1038/mp.2014.193. PMID 25644381.
  6. Allende-Vega N, McKenzie L, Meek D (September 2008). "Transcription factor TAFII250 phosphorylates the acidic domain of Mdm2 through recruitment of protein kinase CK2". Mol. Cell. Biochem. 316 (1-2): 99–106. doi:10.1007/s11010-008-9816-3. PMID 18548200.
  7. Adnane J, Shao Z, Robbins PD (January 1999). "Cyclin D1 associates with the TBP-associated factor TAF(II)250 to regulate Sp1-mediated transcription". Oncogene 18 (1): 239–47. doi:10.1038/sj.onc.1202297. PMID 9926939.
  8. 8.0 8.1 Siegert JL, Rushton JJ, Sellers WR, Kaelin WG, Robbins PD (November 2000). "Cyclin D1 suppresses retinoblastoma protein-mediated inhibition of TAFII250 kinase activity". Oncogene 19 (50): 5703–11. doi:10.1038/sj.onc.1203966. PMID 11126356.
  9. 9.0 9.1 9.2 Siegert JL, Robbins PD (January 1999). "Rb inhibits the intrinsic kinase activity of TATA-binding protein-associated factor TAFII250". Mol. Cell. Biol. 19 (1): 846–54. PMC 83941. PMID 9858607.
  10. Dikstein R, Ruppert S, Tjian R (March 1996). "TAFII250 is a bipartite protein kinase that phosphorylates the base transcription factor RAP74". Cell 84 (5): 781–90. doi:10.1016/s0092-8674(00)81055-7. PMID 8625415.
  11. Ruppert S, Tjian R (November 1995). "Human TAFII250 interacts with RAP74: implications for RNA polymerase II initiation". Genes Dev. 9 (22): 2747–55. doi:10.1101/gad.9.22.2747. PMID 7590250.
  12. Malik S, Guermah M, Roeder RG (March 1998). "A dynamic model for PC4 coactivator function in RNA polymerase II transcription". Proc. Natl. Acad. Sci. U.S.A. 95 (5): 2192–7. doi:10.1073/pnas.95.5.2192. PMC 19292. PMID 9482861.
  13. Shao Z, Ruppert S, Robbins PD (April 1995). "The retinoblastoma-susceptibility gene product binds directly to the human TATA-binding protein-associated factor TAFII250". Proc. Natl. Acad. Sci. U.S.A. 92 (8): 3115–9. doi:10.1073/pnas.92.8.3115. PMC 42115. PMID 7724524.
  14. Shao Z, Siegert JL, Ruppert S, Robbins PD (July 1997). "Rb interacts with TAF(II)250/TFIID through multiple domains". Oncogene 15 (4): 385–92. doi:10.1038/sj.onc.1201204. PMID 9242374.
  15. Gegonne A, Weissman JD, Singer DS (October 2001). "TAFII55 binding to TAFII250 inhibits its acetyltransferase activity". Proc. Natl. Acad. Sci. U.S.A. 98 (22): 12432–7. doi:10.1073/pnas.211444798. PMC 60071. PMID 11592977.
  16. Bellorini M, Lee DK, Dantonel JC, Zemzoumi K, Roeder RG, Tora L et al. (June 1997). "CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues". Nucleic Acids Res. 25 (11): 2174–81. doi:10.1093/nar/25.11.2174. PMC 146709. PMID 9153318.
  17. Ruppert S, Wang EH, Tjian R (March 1993). "Cloning and expression of human TAFII250: a TBP-associated factor implicated in cell-cycle regulation". Nature 362 (6416): 175–9. doi:10.1038/362175a0. PMID 7680771.
  18. O'Brien T, Tjian R (May 1998). "Functional analysis of the human TAFII250 N-terminal kinase domain". Mol. Cell 1 (6): 905–11. doi:10.1016/s1097-2765(00)80089-1. PMID 9660973.
  19. Lin CY, Tuan J, Scalia P, Bui T, Comai L (Dec 2002). "The cell cycle regulatory factor TAF1 stimulates ribosomal DNA transcription by binding to the activator UBF". Curr. Biol. 12 (24): 2142–6. doi:10.1016/s0960-9822(02)01389-1. PMID 12498690.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.