Surveying

A surveyor at work with an infrared reflector used for distance measurement.

Surveying or land surveying is the technique, profession, and science of determining the terrestrial or three-dimensional position of points and the distances and angles between them. A surveying professional is called a Surveyor. These points are usually on the surface of the Earth, and they are often used to establish land maps and boundaries for ownership, locations like building corners or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

Surveyors work with elements of mathematics (geometry and trigonometry), physics, engineering and the law. They use equipment like total stations, robotic total stations, GPS receivers, prisms, 3D scanners, radios, handheld tablets, digital levels, and surveying software.

Surveying has been an element in the development of the human environment since the beginning of recorded history. The planning and execution of most forms of construction require it. It is also used in transport, communications, mapping, and the definition of legal boundaries for land ownership.

ACSM definitions

The American Congress on Surveying and Mapping (ACSM),defines surveying as the science and art of making all essential measurements to determine the relative position of points or physical and cultural details above, on, or beneath the surface of the Earth, and to depict them in a usable form, or to establish the position of points or details.

Also per ACSM, the type of surveying known as "land surveying" is the detailed study or inspection, as by gathering information through observations, measurements in the field, questionnaires, or research of legal instruments, and data analysis in the support of planning, designing, and establishing of property boundaries. It involves the re-establishment of cadastral surveys and land boundaries based on documents of record and historical evidence, as well as certifying surveys (as required by statute or local ordinance) of subdivision plats or maps, registered land surveys, judicial surveys, and space delineation. Land surveying can include associated services such as mapping and related data accumulation, construction layout surveys, precision measurements of length, angle, elevation, area, and volume, as well as horizontal and vertical control surveys, and the analysis and utilization of land survey data.

History

See also: Cadastre § History, Cartography § History and Topographic mapping § History

Ancient surveying

A plumb rule from the book Cassells' Carpentry and Joinery

Basic surveyance has occurred since humans built the first large structures. The prehistoric monument at Stonehenge (c. 2500 BC) was set out by prehistoric surveyors using peg and rope geometry.[1]

In ancient Egypt, a rope stretcher would use simple geometry to re-establish boundaries after the annual floods of the Nile River. The almost perfect squareness and north-south orientation of the Great Pyramid of Giza, built c. 2700 BC, affirm the Egyptians' command of surveying. The Groma surveying instrument originated in Mesopotamia (early 1st millennium BC).[2]

The mathmetician Liu Hui described ways of measuring distant objects in his work Haidao suanjing or The Sea Island Mathematical Manual, published in 263 AD.

The Romans recognized land surveyors as a profession. They established the basic measurements under which the Roman Empire was divided, such as a tax register of conquered lands (300 AD).[3]

In medieval Europe, beating the bounds maintained the boundaries of a village or parish. This was the practice of gathering a group of residents and walking around the parish or village to establish a communal memory of the boundaries. Young boys were included to ensure the memory lasted as long as possible.

In England, William the Conqueror commissioned the Domesday Book in 1086. It recorded the names of all the land owners, the area of land they owned, the quality of the land, and specific information of the area's content and inhabitants. It did not include maps showing exact locations.

Modern surveying

Abel Foullon described a plane table in 1551, but it is thought that the instrument was in use earlier as his description is of a developed instrument.

Gunter's chain was introduced in 1620 by English mathematician Edmund Gunter. It enabled plots of land to be accurately surveyed and plotted for legal and commercial purposes.

Table of Surveying, 1728 Cyclopaedia

In the 18th century, modern techniques and instruments for surveying began to be used. Jesse Ramsden introduced the first precision theodolite in 1787. It was an instrument for measuring angles in the horizontal and vertical planes. He created his great theodolite using an accurate dividing engine of his own design. Leonard Digges, Joshua Habermel and Jonathan Sisson[4] invented more primitive devices in the previous centuries, but Ramsden's theodolite represented a great step forward in the instrument's accuracy. William Gascoigne invented an instrument that used a telescope with an installed crosshair as a target device, in 1640. James Watt developed an optical meter for the measuring of distance in 1771; it measured the parallactic angle from which the distance to a point could be deduced.

Dutch mathematician Willebrord Snellius (a.k.a. Snell) introduced the modern systematic use of triangulation. In 1615 he surveyed the distance from Alkmaar to Bergen op Zoom, approximately 70 miles (110 kilometres), using a chain of quadrangles containing 33 triangles in all. Snell calculated how the planar formulae could be corrected to allow for the curvature of the earth. He also showed how to resection, or calculate, the position of a point inside a triangle using the angles cast between the vertices at the unknown point. These could be measured more accurately than bearings of the vertices, which depended on a compass. His work established the idea of surveying a primary network of control points, and locating subsidiary points inside the primary network later. Between 1733 and 1740, Jacques Cassini and his son César undertook the first triangulation of France. They included a re-surveying of the meridian arc, leading to the publication in 1745 of the first map of France constructed on rigorous principles.

A map by the Great Trigonometrical Survey, produced in 1870

Triangulation methods were by then well established for local map-making, but it was only towards the end of the 18th century that detailed triangulation network surveys were established to map whole countries. In 1784, A team from General William Roy's Ordnance Survey of Great Britain began the Principal Triangulation of Britain. The first Ramsden theodolite was built for this survey. The survey was finally completed in 1853. The Great Trigonometric Survey of India began in 1801. The Indian survey had an enormous scientific impact; it was responsible for one of the first accurate measurements of a section of an arc of longitude, and for measurements of the geodesic anomaly. It ultimately named and mapped Mount Everest and the other Himalayan peaks. Surveying became a professional occupation in high demand at the turn of the 19th century with the onset of the Industrial Revolution. The profession developed more accurate instruments to aid its work. Industrial infrastructure projects used surveyors to lay out canals, roads and rail,

In the USA, the Land Ordinance of 1785 created the Public Land Survey System. It formed the basis for dividing the western territories into sections to allow the sale of land. The PLSS divided states into township grids which were further divided into sections and fractions of sections.

Napoleon Bonaparte founded continental Europe's first cadastre in 1808. This gathered data on the number of parcels of land, their value, land usage, and names. This system soon spread around Europe.

Robert Torrens introduced the Torrens system in South Australia in 1858. Torrens intended to simplify land transactions and provide reliable titles via a centralized register of land. The Torrens system was adopted in several other nations of the English-speaking world.

20th century

A German engineer surveying during the First World War, 1918

At the beginning of the century surveyors had improved the older chains and ropes, but still faced the problem of accurate measurement of long distances. During the 1950s, Dr Trevor Lloyd Wadley developed the Tellurometer, which measures long distances using two microwave transmitter/receivers.[5] During the late 1950s Geodimeter introduced electronic distance measurement (EDM) equipment.[6] EDM units use a multi frequency phase shift of light waves to find a distance.[7] These instruments saved the need for days or weeks of chain measurement by measuring between points kilometers apart in one go.

Advances in electronics allowed miniaturization of EDM. In the 1970s the first instruments combining angle and distance measurement appeared, becoming known as total stations. Manufacturers added more equipment by degrees, bringing improvements in accuracy and speed of measurement. Major advances include tilt compensators, data recorders, and on-board calculation programs.

The first Satellite positioning system was the U.S. Navy TRANSIT system. The first successful launch took place in 1960. The system's main purpose was to provide position information to Polaris missile submarines, but surveyors could use field receivers to determine the location of a point. Sparse satellite cover and large equipment made observations laborious, and inaccurate. The main use was establishing benchmarks in remote locations.

The US Air force launched the first prototype satellites of the Global Positioning System (GPS) in 1978. GPS used a larger constellation of satellites and improved signal transmission to provide more accuracy. Early GPS observations required several hours of observations by a static receiver to reach survey accuracy requirements. Recent improvements to both the satellites and the receivers allow high-accuracy measurements by using a fixed base station and a second roving antenna. This is known as Real Time Kinematic (RTK) surveying.

21st century

The theodolite, total station, and RTK GPS survey remain the primary methods in use.

Remote sensing and satellite imagery continue to improve and become cheaper, allowing more commonplace use. Prominent new technologies include three-dimensional (3D) scanning and use of lidar for topographical surveys.

Surveying equipment

Example of modern equipment for surveying (Field-Map technology): GPS, laser rangefinder and field computer allows surveying as well as cartography (creation of map in real-time) and field data collection.

The main surveying instruments in use around the world are the theodolite and steel band, the total station, the level and rod and surveying GPS systems. Most instruments are placed on a tripod when in use. Tape measures are often used for measurement of smaller distances. 3D scanners and various forms of aerial imagery are also used.

The Theodolite is an instrument for the measurement of angles. It uses two separate circles, protractors or alidades to measure angles in the horizontal and the vertical plane. A telescope mounted on trunnions is aligned vertically with the target object. The whole upper section rotates for horizontal alignment. The vertical circle measures the angle that the telescope makes against the vertical, known as the vertical angle. The horizontal circle uses an upper and lower plate. When beginning the survey, the surveyor points the instrument in a known direction (bearing), and clamps the lower plate in place. The instrument can then rotate to measure the bearing to other objects. If no bearing is known or direct angle measurement is wanted, the instrument can be set to zero during the initial sight. It will then read the angle between the initial object, the theodolite itself, and the item that the telescope aligns with.

The Gyrotheodolite is a form of theodolite that uses a gyroscope to orient itself in the absence of reference marks. It is used in underground applications.

The total station is a development of the theodolite with an electronic distance measurement device (EDM). A total station can be used for leveling when set to the horizontal plane. Since their introduction, total stations have shifted from optical-mechanical to fully electronic devices.

Modern top-of-the-line total stations no longer need a reflector or prism to return the light pulses used for distance measurements. They are fully robotic, and can even e-mail point data to a remote computer and connect to satellite positioning systems, such as Global Positioning System. Real Time Kinematic GPS systems have increased the speed of surveying, but they are still only horizontally accurate to about 20 mm and vertically to 30–40 mm.[8]

GPS surveying differs from other GPS users in the equipment and methods used. Static GPS uses two receivers placed in position for a considerable length of time. The long span of time lets the receiver compare measurements as the satellites orbit, providing the measurement network with well conditioned geometry. This produces an accurate baseline that can be very long. (over 20 km) RTK surveying uses one static antenna and one roving antenna. The static antenna tracks changes in the satellite positions and atmospheric conditions. The surveyor uses the roving antenna to measure the points needed for the survey. The two antennas are linked by a radio signal that allows the static antenna to send corrections to the roving antenna. The roving antenna then applies those corrections to the GPS signals it is receiving to calculate its own position. RTK surveying covers smaller distances than static methods because divergent conditions further away from the base reduce accuracy.

Surveying instruments have characteristics that make them suitable for certain uses. Theodolites and levels are often used by constructors rather than surveyors in first world countries. The constructor can perform simple survey tasks using a relatively cheap instrument. Total stations are workhorses for many professional surveyors because they are versatile and reliable in all conditions. The productivity improvements from a GPS on large scale surveys makes them popular for major infrastructure or data gathering projects. One-person robotic-guided total stations allow surveyors to measure without extra workers to aim the telescope or record data. A fast but expensive way to measure large areas is with a helicopter, using a GPS to record the location of the helicopter and a laser scanner to measure the ground. To increase precision, surveyors place beacons on the ground (about 20 km (12 mi) apart). This method reaches precisions between 5–40 cm (depending on flight height).[9]

Surveyors use ancillary equipment such as tripods and instrument stands, staves and beacons used for sighting purposes, PPE, vegetation clearing equipment, digging implements for finding survey markers buried over time, hammers for placements of markers in various surfaces and structures, and portable radios for communication over long lines of sight.

Surveying techniques

A standard Brunton Geo compass, still used commonly today by geographers, geologists and surveyors for field-based measurements

Surveyors determine the position of objects by measuring angles and distances. The factors that can affect the accuracy of their observations must also be measured. From this information, they can calculate constructs like vectors, bearings, co-ordinates, elevations, areas, volumes, plans and maps. Measurements are often split into horizontal and vertical components to simplify calculation. GPS and astronomic measurements also need measurement of a time component.

Distance measurement

Before EDM devices, distances were measured using a variety of means. These included chains having links of a known length such as a Gunter's chain, or measuring tapes made of steel or invar. To measure horizontal distances, these chains or tapes were pulled taut to reduce sagging and slack. The distance had to be adjusted for heat expansion. Attempts to hold the measuring instrument level would also be made. When measuring up a slope, the surveyor might have to "break" (break chain) the measurement- use an increment less than the total length of the chain. Perambulators, or measuring wheels, were used to measure longer distances but not to a high level of accuracy. Tacheometry is the science of measuring distances by measuring the angle between two ends of an object with a known size. It was sometimes used before to the invention of EDM where rough ground made chain measurement impractical.

Angle measurement

Historically, horizontal angles were measured by using a compass to provide a magnetic bearing. The deflection from the bearing was recorded. Later, more precise scribed discs later improved better angular resolution. Mounting telescopes with reticles atop the disc allowed more precise sighting. (see theodolite). Levels and calibrated circles allowed measurement of vertical angles. verniers allowed measurement to a fraction of a degree, such as with a turn-of-the-century transit.

The Plane table provided a graphical method of recording and measuring angles, which reduced the amount of mathematics required.

By observing the bearing from every vertex in a figure, a surveyor can measure around the figure. The final observation will be between the two points first observed, except with a 180° difference. This is called a close. If the first and last bearings are different, this shows the error in the survey, called the angular misclose. The surveyor can use this information to prove that the work meets the expected standards.

Levelling

Main article: Levelling
Center for Operational Oceanographic Products and Services staff member conducts tide station leveling in support of the U.S. Army Corp of Engineers in Richmond, Maine.

The simplest method for measuring height is with an altimeter using air pressure to indicate height. When more precise measurements are needed, means like precise levels (also known as differential leveling) are used. When precise leveling, a series of measurements between two points are taken using an instrument and a measuring rod. Differences in height between the measurements are added and subtracted in a series to get the net difference in elevation between the two endpoints. With the Global Positioning System (GPS), elevation can also be measured with sophisticated satellite receivers. Usually GPS is somewhat less accurate than traditional precise leveling, but may be similar over long distances.

When using an optical level, the endpoint may be out of the effective range of the instrument. There may be obstructions or large changes of elevation between the endpoints. In these situations, multiple setups are needed. Turning is a term used when referring to moving the level to take an elevation shot from a different location. To "turn" the level, one must first take a reading and record the elevation of the point the rod is located on. While the rod is being kept in exactly the same location, the level is moved to a new location where the rod is still visible. A reading is taken from the new location of the level and the height difference is used to find the new elevation of the level gun. This is repeated until the series of measurements is completed. The level must be horizontal to get a valid measurement. Because of this, if the horizontal crosshair of the instrument is lower than the base of the rod, the surveyor will not be able to sight the rod and get a reading. The rod can usually be raised up to 25 feet high, allowing the level to be set much higher than the base of the rod.

Determining position

The primary way of determining one's position on the earth's surface when no known positions are nearby is by astronomic observations. Observations to the sun, moon and stars could all be made using navigational techniques. Once the instrument's position and bearing to a star is determined, the bearing can be transferred to a reference point on the earth. The point can then be used as a base for further observations. Survey-accurate astronomic positions were difficult to observe and calculate and so tended to be a base off which many other measurements were made. Since the advent of the GPS system, astronomic observations are rare as GPS allows adequate positions to be determined over most of the surface of the earth.

Reference networks

Main article: Geodetic network
A survey using traverse and offset measurements to record the location of the shoreline shown in blue. Black dashed lines are traverse measurements between reference points (black circles). The red lines are offsets measured at right angles to the traverse lines.

Few survey positions are derived from first principles. Instead, most surveys points are measured relative to previous measured points. This forms a reference or control network where each point can be used by a surveyor to determine their own position when beginning a new survey.

Survey points are usually marked on the earth's surface by objects ranging from small nails driven into the ground to large beacons that can be seen from long distances. The surveyors can set up their instruments on this position and measure to nearby objects. Sometimes a tall, distinctive feature such as a steeple or radio aerial has its position calculated as a reference point that angles can be measured against.

Triangulation is a method of horizontal location favoured in the days before EDM and GPS measurement. It can determine distances, elevations and directions between distant objects. Since the early days of surveying, this was the primary method of determining accurate positions of objects for topographic maps of large areas. A surveyor first needs to know the horizontal distance between two of the objects, known as the baseline. Then the heights, distances and angular position of other objects can be derived, as long as they are visible from one of the original objects. High-accuracy transits or theodolites were used, and angle measurements repeated for increased accuracy. See also Triangulation in three dimensions.

Offsetting is an alternate method of determining position of objects, and was often used to measure imprecise features such as riverbanks. The surveyor would mark and measure two known positions on the ground roughly parallel to the feature, and mark out a baseline between them. At regular intervals, a distance was measured at right angles from the first line to the feature. The measurements could then be plotted on a plan or map, and the points at the ends of the offset lines could be joined to show the feature.

Traversing is a common method of surveying smaller areas. The surveyor starts from an old reference mark or known position and places a network of reference marks covering the survey area. They then measure bearings and distances between the reference marks, and to the target features. Most traverses form a loop pattern or link between two prior reference marks to allow the surveyor to check their measurements are correct.

Datum and coordinate systems

Many surveys do not calculate positions on the surface of the earth, but instead measure the relative positions of objects. However, often the surveyed items need to be compared to outside data, such as boundary lines or previous surveys objects. The oldest way of describing a position is via latitude and longitude, and often a height above sea level. As the surveying profession grew it created Cartesian coordinate systems to simplify the mathematics for surveys over small parts of the earth. The simplest coordinate systems assume that the earth is flat and measure from an arbitrary point, known as a 'datum' (singular form of data). The coordinate system allows easy calculation of the distances and direction between objects over small areas. Large areas distort due to the earth's curvature. North is often defined as true north at the datum.

For larger regions, it is necessary to model the shape of the earth using an ellipsoid or a geoid. Many countries have created coordinate-grids customized to lessen error in their area of the earth.

Errors and accuracy

A basic tenet of surveying is that no measurement is perfect, and that there will always be a small amount of error.[10] There are three classes of survey errors:

Surveyors avoid propagating errors by ensuring that their equipment is in good condition, using consistent measurement and recording methods, and by good design of their survey reference network. Redundancy of measurements allows the use of averaging and allows outlier measurements to be discarded. Independent checks like measuring a point from two or more locations or using two different methods are used. Errors can be detected by comparing the results of the two measurements.

Once the surveyor has calculated the level of the errors in his work, it is adjusted. This is the process of distributing the error between all measurements. Each observation is weighted according to how much of the total error it is likely to have caused and part of that error is allocated to it in a proportional way. The most common methods of adjustment are the Bowditch method and the Principle of least squares method.

The Surveyor must be able to distinguish between accuracy and precision. In the United States, surveyors and civil engineers use units of feet wherein a survey foot breaks down into 10ths and 100ths. Many deed descriptions requiring distance calls are often expressed using these units (125.25 ft). On the subject of accuracy, surveyors are often held to a standard of one one-hundredth of a foot; about 1/8 inch. Calculation and mapping tolerances are much smaller wherein achieving near-perfect closures are desired. Though tolerances will vary from project to project, in the field and day to day usage beyond a 100th of a foot is often impractical.

Types of surveys

See also: Survey (disambiguation) and Survey § Earth sciences

Local professional organisation or regulatory bodies classify specializations of surveying in different ways. Broad groups are:

The surveying profession

See also: Geomatics
The pundit (explorer) cartographer Nain Singh Rawat (19th century) received a Royal Geographical Society gold medal in 1876, for his efforts in exploring the Himalayas for the British
An all-female surveying crew in Idaho, 1918

The basic principles of surveying have changed little over the ages, but the tools used by surveyors have evolved. Engineering, especially civil engineering, often needs surveyors.

Surveyors help determine the placement of roads, railways, reservoirs, dams, pipeline transports, retaining walls, bridges, or buildings. They establish the boundaries of legal descriptions and political divisions. They also provide advice and data for geographical information systems (GIS) that record land features and boundaries.

Surveyors must have a thorough knowledge of algebra, basic calculus, geometry, and trigonometry. They must also know the laws that deal with surveys, real property, and contracts.

Most jurisdictions recognize three different levels of qualification:

Survey assistants or chainmen are usually unskilled workers who help the surveyor. They place target reflectors, find old reference marks, and mark points on the ground. The term 'chainman' derives from past use of measuring chains. An assistant would move the far end of the chain under the surveyor's direction.

Survey technicians often operate survey instruments, run surveys in the field, do survey calculations, or draft plans. A technician usually has no legal authority and cannot certify his work. Not all tehnicians are qualified, but qualifications at the certificate or diploma level are available.

Licensed, registered, or chartered surveyors usually hold a degree or higher qualification. They are often required to pass further exams to join a professional association or to gain certifying status. Surveyors are responsible for planning and management of surveys. They have to ensure that their surveys, or surveys performed under their supervision, meet the necessary legal standards. Many principals of surveying firms hold this status.

Informal surveying

Not all surveys are carried out by professional surveyors. Depending on the jurisdiction and circumstances, the builders of a structure may set it out themselves. Surveyors often set out the most significant corners of a building. The builders then lay out the rest of the building themselves simple survey techniques.

Licensing

Licensing requirements vary with jurisdiction, and are commonly consistent within national borders.

USA

In most of the United States, surveying is recognized as a distinct profession apart from engineering.

Licensing requirements vary by state, but they have components of education, experience, and examinations. Most states insist upon the basic qualification of a degree in surveying, plus experience and examination requirements. In the past, candidates completed an apprenticeship, and then took a series of state-administered examinations to gain licensure.

The licensing process follows two phases. Upon graduation, the candidate may take the Fundamentals of Surveying (FS) exam. If they pass and meet the other requirements they become a surveying intern (SI). Upon being certified as an SI, the candidate then needs to gain on-the-job experience to become eligible for the second phase. In most states, this is the Principles and Practice of Land Surveying (PS) exam and a state-specific examination. SIs were formerly called surveyors in training (SIT).

Licensed surveyors usually denote themselves with post nominals. The letters P.L.S. (professional land surveyor), P.S. (professional surveyor), L.S. (land surveyor), R.L.S. (registered land surveyor), R.P.L.S. (Registered Professional Land Surveyor), or P.S.M. (professional surveyor and mapper) follow their names, depending upon their jurisdiction of registration.

Canada

In Canada, land surveyors register to work in their respective province. The designation for a land surveyor breaks down by province. It follows the rule whereby the first letter indicates the province, followed by L.S. There is also a designation C.L.S. or Canada lands surveyor. They have the authority to work on Canada lands, which include Indian Reserves, National Parks, the three territories, and offshore lands.

Commonwealth

Many Commonwealth countries use the term Chartered Land Surveyor for someone holding a professional license.

Legal aspects

A licensed land surveyor is generally required to sign and seal all plans. The state dictates the format, showing their name and registration number.

In many jurisdictions, surveyors must mark their registration number on survey monuments when setting boundary corners. Monuments take the form of capped iron rods, concrete monuments, or nails with washers.

Surveying students with their professor at the Helsinki University of Technology in the late 19th century

Surveying institutions

Most countries' governments regulate at least some forms of surveying. Their survey agencies establish regulations and standards. Standards often deal with accuracy tolerances, who may call themselves a surveyor, types of monumentation used for boundaries, and maintenance of geodetic networks. Many nations devolve this authority to regional entities or states/provinces. Cadastral surveys tend to be the most regulated because of the permanence of the work. lot boundaries established by cadastral surveys may stand for hundreds of years without modification.

Most jurisdictions also have a form of professional institution representing local surveyors. These institutes often endorse or license potential surveyors, as well as set and enforce ethical standards. The largest such institution is International Federation of Surveyors (Abbreviated FIG, for French: Fédération Internationale des Géomètres), They represent the survey industry worldwide.

Building surveying

Most English speaking countries consider building surveying a distinct profession. Land surveyors have their own professional associations and licencing requirements. The services of a licenced land surveyor are required for boundary surveys (to establish the boundaries of a parcel using its legal description) and subdivision plans (a plot or map based on a survey of a parcel of land, with boundary lines drawn inside the larger parcel to indicated the creation of new boundary lines and roads).

Cadastral surveying

Main article: Cadastral surveying

One of the primary roles of the land surveyor is to determine the boundary of real property on the ground. The boundary is established in legal documents and plans prepared by attorneys, engineers, and land surveyors. The corners of the property will either have been monumented by a prior surveyor, or by the surveyor performing the survey of the new boundary agreed upon by adjoining land owners.

Cadastral land surveyors are licensed by governments. In the United States, the federal government conducts most cadastral surveys through the cadastral survey branch of the Bureau of Land Management (BLM).[11] They consult with Forest Service, National Park Service, Army Corps of Engineers, Bureau of Indian Affairs, Fish and Wildlife Service, Bureau of Reclamation, and others. The BLM used to be known as the General Land Office (GLO).

In states organized per the Public Land Survey System (PLSS), surveyors must carry out BLM cadastral surveys under that system.

Cadastral surveyors often have to work around changes to the earth that obliterate or damage boundary monuments. When this happens, they must consider evidence that is not recorded on the title deed. This is known as extrinsic evidence.[12]

F.V. Hayden's map of Yellowstone National Park, 1871. His surveys were a significant basis for establishing the park in 1872.

The art of land surveying

Many properties have problems with poor bounding or miscalculations in past surveys, titles, easements, and wildlife crossings. Many properties are created from multiple divisions of a larger piece over the course of years, and with every additional division the risk of miscalculation increases. Abutting properties might not coincide with adjacent parcels, resulting in hiatuses (gaps) and overlaps. Many times a surveyor must solve a puzzle using pieces that do not exactly fit together. The solution uses the surveyor's research and interpretation, along with established procedures for resolving discrepancies. This is in essence a process of continual error correction and update. The new records countermand the previous and sometimes erroneous evidence recorded by older monuments and survey methods.[13]

See also

References

  1. Johnson, Anthony, Solving Stonehenge: The New Key to an Ancient Enigma. (Thames & Hudson, 2008) ISBN 978-0-500-05155-9
  2. Hong-Sen Yan & Marco Ceccarelli (2009), International Symposium on History of Machines and Mechanisms: Proceedings of HMM 2008, Springer, p. 107, ISBN 1-4020-9484-1
  3. Lewis, M. J. T. (2001-04-23). Surveying Instruments of Greece and Rome. Cambridge University Press. ISBN 9780521792974. Retrieved 30 August 2012.
  4. Turner, Gerard L'E. Nineteenth Century Scientific Instruments, Sotheby Publications, 1983, ISBN 0-85667-170-3
  5. Sturman, Brian; Wright, Alan. "The History of the Tellurometer" (PDF). http://www.fig.net/''. International Federation of Surveyors. Retrieved 20 July 2014.
  6. Cheves, Marc. "Geodimeter-The First Name in EDM". http://www.profsurv.com/magazine/''. Retrieved 2014-07-20.
  7. Mahun, Jerry. "Electronic Distance Measurement". Jerrymahun.com. Retrieved 2014-07-20.
  8. National Cooperative Highway Research Program: Collecting, Processing and Integrating GPS data into GIS, p. 40. Published by Transportation Research Board, 2002 ISBN 0-309-06916-5, ISBN 978-0-309-06916-8
  9. Toni Schenk, Suyoung Seo, Beata Csatho: Accuracy Study of Airborne Laser Scanning Data with Photogrammetry, p. 118
  10. Kahmen, Heribert; Faig, Wolfgang (1988). Surveying. Berlin: de Gruyter. p. 9. ISBN 3-11-008303-5. Retrieved 2014-08-10.
  11. A History of the Rectangular Survey System by C. Albert White, 1983, Pub: Washington, D.C. : U.S. Dept. of the Interior, Bureau of Land Management : For sale by Supt. of Docs., U.S. G.P.O.,
  12. Richards, D., & Hermansen, K. (1995). Use of extrinsic evidence to aid interpretation of deeds. Journal of Surveying Engineering, (121), 178.
  13. http://www.state-engineering.com/land_surveying.html

Further reading

  • "The Surveying Handbook". 1995. doi:10.1007/978-1-4615-2067-2. ISBN 978-1-4613-5858-9.
  • Keay J (2000), The Great Arc: The Dramatic Tale of How India was Mapped and Everest was Named, Harper Collins, 182pp, ISBN 0-00-653123-7.
  • Pugh J C (1975), Surveying for Field Scientists, Methuen, 230pp, ISBN 0-416-07530-4
  • Genovese I (2005), Definitions of Surveying and Associated Terms, ACSM, 314pp, ISBN 0-9765991-0-4.

External links

Look up surveying in Wiktionary, the free dictionary.