Supersolvable group

In mathematics, a group is supersolvable (or supersoluble) if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability.

Definition

Let G be a group. G is supersolvable if there exists a normal series

\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{s-1} \triangleleft H_s = G

such that each quotient group H_{i+1}/H_i \; is cyclic and each H_i is normal in G.

By contrast, for a solvable group the definition requires each quotient to be abelian. In another direction, a polycyclic group must have a normal series with each quotient cyclic, but there is no requirement that each H_i be normal in G. As every finite solvable group is polycyclic, this can be seen as one of the key differences between the definitions. For a concrete example, the alternating group on four points, A_4, is solvable but not supersolvable.

Basic Properties

Some facts about supersolvable groups:

References