Supercritical water reactor

Supercritical water reactor scheme.

The supercritical water reactor (SCWR) is a Generation IV reactor concept that uses supercritical water (referring to the critical point of water, not the critical mass of the nuclear fuel) as the working fluid. SCWRs resemble light water reactors (LWRs) but operate at higher pressure and temperature, with a direct once-through cycle like a boiling water reactor (BWR), and the water always in a single, fluid state like the pressurized water reactor (PWR). The BWR, PWR and supercritical steam generator are all proven technologies. The SCWR is a promising advanced nuclear system because of its high thermal efficiency (~45% vs. ~33% for current LWRs) and simpler design, and is being investigated[1] by 32 organizations in 13 countries.

History

SCWRs were experimented with in both Soviet Union and in the United States as early as the 1950s and 1960s. The idea however went on a 30-year hiatus, only to recently come into focus again. The first two units (now closed) at the Beloyarsk Nuclear Power Station were of SCWR type.[2]

Design

Moderator-coolant

The SCWR uses supercritical water as a neutron moderator and coolant. Above the critical point, steam and liquid become the same density and are indistinguishable, eliminating the need for pressurizers and steam generators (PWR), or jet/recirculation pumps, steam separators and dryers (BWR). Also by avoiding boiling, SCWR does not generate chaotic voids (bubbles) with less density and moderating effect. In a LWR this can affect heat transfer and water flow, and the feedback can make the reactor power harder to predict and control. SCWR's simplification should reduce construction costs and improve reliability and safety. The neutron spectrum will be only partly moderated, perhaps to the point of being a fast neutron reactor. This is because the supercritical water has a lower density and moderating effect than liquid water, but is better at heat transfer, so less is needed. In some designs with a faster neutron spectrum the water is a reflector outside the core, or else only part of the core is moderated. A fast neutron spectrum has three main advantages:

Fuel

The fuel will resemble traditional LWR fuel, likely with channelized fuel assemblies like the BWR to reduce the risk of hotspots caused by local pressure/temperature variations. The enrichment of the fuel will have to be higher to compensate for the neutron absorption by the cladding, which can't be made from the zirconium customary in LWRs, as zirconium would corrode rapidly. Stainless steel or nickel alloys may be used. The fuel rods must withstand the corrosive supercritical environment, as well as a power surge in case of an accident. There are four failure modes considered during an accident: brittle failure, buckling collapse, overpressure damage and creep failure. To reduce corrosion, hydrogen can be added to the water.

At least one concept uses high temperature gas cooled reactor fuel particles, BISO.[3]

This uses corrosion resistant silicon carbide coatings on uranium fuel particles, solving the challenge of the cladding using an innovative yet proven fuel.

Control

SCWRs would likely have control rods inserted through the top, as is done in PWRs.

Material

The conditions inside an SCWR are harsher than those in LWRs, LMFBRs and supercritical fossil fuel plants (with which much experience has been gained, though this does not include the combination of harsh environment and intense neutron radiation). SCWRs need a higher standard of core materials (especially fuel cladding) than either of these. In addition, some elements become very radioactive from absorbing neutrons, e.g. cobalt-59 captures neutrons to become cobalt-60, a strong gamma emitter, so cobalt-containing alloys are unsuitable for reactors. R&D focuses on:

Advantages

Challenges

See also

References

  1. Buongiorno, Jacopo, "The Supercritical Water Cooled Reactor: Ongoing Research and Development in the U.S", 2004 international congress on advances in nuclear power plants (American Nuclear Society - ANS, La Grange Park (United States)), OSTI 21160713, retrieved 10 Nov 2012
  2. Steven B Krivit; Jay H Lehr; Thomas B Kingery, ed. (2011). Nuclear Energy Encyclopedia: Science, Technology, and Applications. Wiley. pp. 317–319. ISBN 978-1-118-04347-9.
  3. 3.0 3.1 Tsiklauri, Georgi; Talbert, Robert; Schmitt, Bruce; Filippov, Gennady; Bogoyavlensky, Roald; Grishanin, Evgenei (2005). "Supercritical steam cycle for nuclear power plant" (PDF). Nuclear Engineering and Design 235 (15): 1651–1664. doi:10.1016/j.nucengdes.2004.11.016. ISSN 0029-5493.
  4. MacDonald, Philip; Buongiorno, Jacopo; Davis, Cliff; Witt, Robert (2003), Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production - Progress Report for Work Through September 2003 - 2nd Annual Report and 8th Quarterly Report (PDF) (INEEL/EXT-03-01277), Idaho National Laboratory
  5. 5.0 5.1 Chow, Chun K.; Khartabil, Hussam F. (2007), "Conceptual fuel channel designs for CANDU-SCWR" (PDF), Nuclear Engineering and Technology 40 (2)

External links