Squirmer

Shaker, \beta=-\infty
Pusher, \beta=-5
Neutral, \beta=0
Puller, \beta=5
Shaker, \beta=\infty
Passive particle
Shaker, \beta=-\infty
Pusher, \beta=-5
Neutral, \beta=0
Puller, \beta=5
Shaker, \beta=\infty
Passive particle
Velocity field of squirmer and passive particle (top row: lab frame, bottom row: swimmer frame)

The squirmer is a model for a spherical microswimmer swimming in Stokes flow. The squirmer model has been introduced by James Lighthill in 1952 and refined and used to model Paramecium by John Blake in 1971.[1] [2] Blake used the squirmer model to describe the flow generated by a carpet of beating short filaments called cilia on the surface of Paramecium. Today, the squirmer is a standard model for the study of self-propelled particles, such as Janus particles, in Stokes flow.[3]

Velocity field in particle frame

Here we give the flow field of a squirmer in the case of a non-deformable axisymmetric spherical squirmer (radius R).[1][2] These expressions are given in a spherical coordinate system.


 u_r(r,\theta)=\frac 2 3 \left(\frac{R^3}{r^3} -1\right)B_1P_1(\cos\theta)+\sum_{n=2}^{\infty}\left(\frac{R^{n+2}}{r^{n+2}}-\frac{R^n}{r^n}\right)B_nP_n(\cos\theta)\;,

 u_{\theta}(r,\theta)=\frac 2 3 \left(\frac{R^3}{2r^3}+1\right)B_1V_1(\cos\theta)+\sum_{n=2}^{\infty}\frac 1 2\left(n\frac{R^{n+2}}{r^{n+2}}+(2-n)\frac{R^n}{r^n}\right)B_nV_n(\cos\theta)\;.

Here B_n are constant coefficients, P_n(\cos\theta) are Legendre polynomials, and V_n(\cos\theta)=\frac{-2}{n(n+1)}\partial_{\theta}P_n(\cos\theta).
One finds P_1(\cos\theta)=\cos\theta, P_2(\cos\theta)=\tfrac 1 2 (3\cos^2\theta-1), \dots, V_1(\cos\theta)=\sin\theta, V_2(\cos\theta)= \tfrac{1}{2} \sin 2\theta, \dots.
The expressions above are in the frame of the moving particle. At the interface one finds u_{\theta}(R,\theta)=\sum_{n=1}^{\infty} B_nV_n and u_r(R,\theta)=0.

Swimming speed and lab frame

By using the Lorentz Reciprocal Theorem, one finds the velocity vector of the particle \mathbf{U}=-\tfrac{1}{2} \int \mathbf{u}(R,\theta)\sin\theta\mathrm{d}\theta=\tfrac 2 3 B_1 \mathbf{e}_z. The flow in a fixed lab frame is given by \mathbf{u}^L=\mathbf{u}+\mathbf{U}:


 u_r^L(r,\theta)=\frac{R^3}{r^3}UP_1(\cos\theta)+\sum_{n=2}^{\infty}\left(\frac{R^{n+2}}{r^{n+2}}-\frac{R^n}{r^n}\right)B_nP_n(\cos\theta)\;,

 u_{\theta}^L(r,\theta)=\frac{R^3}{2r^3}UV_1(\cos\theta)+\sum_{n=2}^{\infty}\frac 1 2\left(n\frac{R^{n+2}}{r^{n+2}}+(2-n)\frac{R^n}{r^n}\right)B_nV_n(\cos\theta)\;.

with swimming speed U=|\mathbf{U}|. Note, that \lim_{r\rightarrow\infty}\mathbf{u}^L=0 and u^L_r(R,\theta)\neq 0.

Structure of the flow and squirmer parameter

The series above are often truncated at n=2 in the study of far field flow, r\gg R. Within that approximation, u_{\theta}(R,\theta)=B_1\sin\theta+\tfrac 1 2 B_2 \sin 2 \theta, with squirmer parameter \beta=B_2/|B_1|. The first mode n=1 characterizes a hydrodynamic stokeslet with decay \propto 1/r^3 (and with that the swimming speed U). The second mode n=2 corresponds to a hydrodynamic stresslet or force dipole with decay \propto 1/r^2.[4] Thus, \beta gives the ratio of both contributions and the direction of the force dipole. \beta is used to categorize microswimmers into pushers, pullers and neutral swimmers.[5]

Swimmer Type pusher neutral swimmer puller shaker passive particle
Squirmer Parameter \beta<0 \beta=0 \beta>0 \beta=\pm\infty
Decay of Velocity Far Field \mathbf{u}\propto 1/r^2 \mathbf{u}\propto 1/r^3 \mathbf{u}\propto 1/r^2 \mathbf{u}\propto 1/r^2 \mathbf{u}\propto 1/r
Biological Example E.Coli Paramecium Chlamydomonas reinhardtii

As can be seen in the figures above, the (lab frame) velocity field of the passive particle corresponds to a monopole. Furthermore, the B_1 mode corresponds to a dipole (see case \beta=0) and the B_2 mode corresponds to a quadrupole (see cases \beta\neq0).

References

  1. 1.0 1.1 Lighthill, M. J. (1952). "On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers". Communications on Pure and Applied Mathematics 5 (2): 109–118. doi:10.1002/cpa.3160050201. ISSN 0010-3640.
  2. 2.0 2.1 Blake, J. R. (1971). "A spherical envelope approach to ciliary propulsion". Journal of Fluid Mechanics 46 (01): 199. doi:10.1017/S002211207100048X. ISSN 0022-1120.
  3. Bickel, Thomas; Majee, Arghya; Würger, Alois (2013). "Flow pattern in the vicinity of self-propelling hot Janus particles". Physical Review E 88 (1). doi:10.1103/PhysRevE.88.012301. ISSN 1539-3755.
  4. Happel, John; Brenner, Howard (1981). "Low Reynolds number hydrodynamics". doi:10.1007/978-94-009-8352-6. ISSN 0921-3805.
  5. Downton, Matthew T; Stark, Holger (2009). "Simulation of a model microswimmer". Journal of Physics: Condensed Matter 21 (20): 204101. doi:10.1088/0953-8984/21/20/204101. ISSN 0953-8984.