Software

For other uses, see Software (disambiguation).

Computer software or simply software is any set of machine-readable instructions that directs a computer's processor to perform specific operations. Computer software contrasts with computer hardware, which is the physical component of computers. Computer hardware and software require each other and neither can be realistically used without the other. Using a musical analogy, hardware is like a musical instrument and software is like the notes played on that instrument.

Computer software includes computer programs, libraries and their associated documentation. The word software is also sometimes used in a more narrow sense, meaning application software only. Software is stored in computer memory and is intangible, i.e. it cannot be touched.[1]

At the lowest level, executable code consists of machine language instructions specific to an individual processor – typically a central processing unit (CPU). A machine language consists of groups of binary values signifying processor instructions that change the state of the computer from its preceding state. For example, an instruction may change the value stored in a particular storage location inside the computer – an effect that is not directly observable to the user. An instruction may also (indirectly) cause something to appear on a display of the computer system – a state change which should be visible to the user. The processor carries out the instructions in the order they are provided, unless it is instructed to "jump" to a different instruction, or interrupted.

Software written in a machine language is known as "machine code". However, in practice, software is usually written in high-level programming languages that are easier and more efficient for humans to use (closer to natural language) than machine language.[2] High-level languages are translated, using compilation or interpretation or a combination of the two, into machine language. Software may also be written in a low-level assembly language, essentially, a vaguely mnemonic representation of a machine language using a natural language alphabet. Assembly language is translated into machine code using an assembler.

History

Main article: History of software

An outline (algorithm) for what would have been the first piece of software was written by Ada Lovelace in the 19th century, for the planned analytical engine. However, neither the analytical engine nor any software for it were ever created.

The first theory about software - prior to the creation of computers as we know them today - was proposed by Alan Turing in his 1935 essay Computable numbers with an application to the Entscheidungsproblem (decision problem).

This eventually led to the creation of the twin academic fields of computer science and software engineering, which both study software and its creation. Computer science is more theoretical (Turing's essay is an example of computer science), whereas software engineering is focused on more practical concerns.

However, prior to 1946, software as we now understand it - programs stored in the memory of stored-program digital computers - did not yet exist. The very first electronic computing devices were instead rewired in order to "reprogram" them.

Types of software

User Application Operating System
A diagram showing how the operating system software and application software are layered on a typical desktop computer. The arrows indicate information flow.

On virtually all computer platforms, software can be grouped into a few broad categories.

Purpose, or domain of use

Based on the goal, computer software can be divided into:

Nature, or domain of execution

Programming tools

Main article: Programming tool

Programming tools are also software in the form of programs or applications that software developers (also known as programmers, coders, hackers or software engineers) use to create, debug, maintain (i.e. improve or fix), or otherwise support software. Software is written in one or more programming languages; there are many programming languages in existence, and each has at least one implementation, each of which consists of its own set of programming tools. These tools may be relatively self-contained programs such as compilers, debuggers, interpreters, linkers, and text editors, that can be combined together to accomplish a task; or they may form an integrated development environment (IDE), which combines much or all of the functionality of such self-contained tools. IDEs may do this by either invoking the relevant individual tools or by re-implementing their functionality in a new way. An IDE can make it easier to do specific tasks, such as searching in files in a particular project. Many programming language implementations provide the option of using both individual tools or an IDE.

Software topics

Architecture

Users often see things differently from programmers. People who use modern general purpose computers (as opposed to embedded systems, analog computers and supercomputers) usually see three layers of software performing a variety of tasks: platform, application, and user software.

Execution

Main article: Execution (computing)

Computer software has to be "loaded" into the computer's storage (such as the hard drive or memory). Once the software has loaded, the computer is able to execute the software. This involves passing instructions from the application software, through the system software, to the hardware which ultimately receives the instruction as machine code. Each instruction causes the computer to carry out an operation – moving data, carrying out a computation, or altering the control flow of instructions.

Data movement is typically from one place in memory to another. Sometimes it involves moving data between memory and registers which enable high-speed data access in the CPU. Moving data, especially large amounts of it, can be costly. So, this is sometimes avoided by using "pointers" to data instead. Computations include simple operations such as incrementing the value of a variable data element. More complex computations may involve many operations and data elements together.

Quality and reliability

Main articles: Software quality, Software testing and Software reliability

Software quality is very important, especially for commercial and system software like Microsoft Office, Microsoft Windows and Linux. If software is faulty (buggy), it can delete a person's work, crash the computer and do other unexpected things. Faults and errors are called "bugs" which are often discovered during alpha and beta testing. Software is often also a victim to what is known as software aging, the progressive performance degradation resulting from a combination of unseen bugs.

Many bugs are discovered and eliminated (debugged) through software testing. However, software testing rarely – if ever – eliminates every bug; some programmers say that "every program has at least one more bug" (Lubarsky's Law).[6] In the waterfall method of software development, separate testing teams are typically employed, but in newer approaches, collectively termed agile software development, developers often do all their own testing, and demonstrate the software to users/clients regularly to obtain feedback. Software can be tested through unit testing, regression testing and other methods, which are done manually, or most commonly, automatically, since the amount of code to be tested can be quite large. For instance, NASA has extremely rigorous software testing procedures for many operating systems and communication functions. Many NASA-based operations interact and identify each other through command programs. This enables many people who work at NASA to check and evaluate functional systems overall. Programs containing command software enable hardware engineering and system operations to function much easier together.

License

Main article: Software license

The software's license gives the user the right to use the software in the licensed environment, and in the case of free software licenses, also grants other rights such as the right to make copies.

Proprietary software can be divided into two types:

Open source software, on the other hand, comes with a free software license, granting the recipient the rights to modify and redistribute the software.

Patents

Software patents, like other types of patents, are theoretically supposed to give an inventor an exclusive, time-limited license for a detailed idea (e.g. an algorithm) on how to implement a piece of software, or a component of a piece of software. Ideas for useful things that software could do, and user requirements, are not supposed to be patentable, and concrete implementations (i.e. the actual software packages implementing the patent) are not supposed to be patentable either - the latter are already covered by copyright, generally automatically. So software patents are supposed to cover the middle area, between requirements and concrete implementation. In some countries, a requirement for the claimed invention to have an effect on the physical world may also be part of the requirements for a software patent to be held valid - although since all useful software has effects on the physical world, this requirement may be open to debate.

Software patents are controversial in the software industry with many people holding different views about them. One of the sources of controversy is that the aforementioned split between initial ideas and patent does not seem to be honored in practice by patent lawyers - for example the patent for Aspect-Oriented Programming (AOP), which purported to claim rights over any programming tool implementing the idea of AOP, howsoever implemented. Another source of controversy is the effect on innovation, with many distinguished experts and companies arguing that software is such a fast-moving field that software patents merely create vast additional litigation costs and risks, and actually retard innovation. In the case of debates about software patents outside the US, the argument has been made that large American corporations and patent lawyers are likely to be the primary beneficiaries of allowing or continue to allow software patents.

Design and implementation

Design and implementation of software varies depending on the complexity of the software. For instance, the design and creation of Microsoft Word took much more time than designing and developing Microsoft Notepad because the latter has much more basic functionality.

Software is usually designed and created (a.k.a. coded/written/programmed) in integrated development environments (IDE) like Eclipse, IntelliJ and Microsoft Visual Studio that can simplify the process and compile the software (if applicable). As noted in a different section, software is usually created on top of existing software and the application programming interface (API) that the underlying software provides like GTK+, JavaBeans or Swing. Libraries (APIs) can be categorized by their purpose. For instance, the Spring Framework is used for implementing enterprise applications, the Windows Forms library is used for designing graphical user interface (GUI) applications like Microsoft Word, and Windows Communication Foundation is used for designing web services. When a program is designed, it relies upon the API. For instance, if a user is designing a Microsoft Windows desktop application, he or she might use the .NET Windows Forms library to design the desktop application and call its APIs like Form1.Close() and Form1.Show()[7] to close or open the application, and write the additional operations him/herself that it needs to have. Without these APIs, the programmer needs to write these APIs him/herself. Companies like Oracle and Microsoft provide their own APIs so that many applications are written using their software libraries that usually have numerous APIs in them.

Data structures such as hash tables, arrays, and binary trees, and algorithms such as quicksort, can be useful for creating software.

Computer software has special economic characteristics that make its design, creation, and distribution different from most other economic goods.[8][9]

A person who creates software is called a programmer, software engineer or software developer, terms that all have a similar meaning. More informal terms for programmer also exist such as "coder" and "hacker"  although use of the latter word may cause confusion, because it is more often used to mean someone who illegally breaks into computer systems.

Industry and organizations

Main article: Software industry

A great variety of software companies and programmers in the world comprise a software industry. Software can be quite a profitable industry: Bill Gates, the founder of Microsoft was the richest person in the world in 2009, largely due to his ownership of a significant number of shares in Microsoft, the company responsible for Microsoft Windows and Microsoft Office software products.

Non-profit software organizations include the Free Software Foundation, GNU Project and Mozilla Foundation. Software standard organizations like the W3C, IETF develop recommended software standards such as XML, HTTP and HTML, so that software can interoperate through these standards.

Other well-known large software companies include Oracle, Novell, SAP, Symantec, Adobe Systems, and Corel, while small companies often provide innovation.

See also

References

  1. "'Software' from Collins Concise English Dictionary". Wordreference.com. Princeton, NJ: Princeton University. Retrieved 2007-08-19.
  2. "Compiler construction".
  3. "System Software". The University of Mississippi.
  4. "Embedded Software—Technologies and Trends". IEEE Computer Society. Retrieved May–June 2009. Check date values in: |accessdate= (help)
  5. "Microcode". Princeton University.
  6. "scripting intelligence book examples".
  7. "MSDN Library". Retrieved 2010-06-14.
  8. v. Engelhardt, Sebastian (2008). "The Economic Properties of Software". Jena Economic Research Papers 2 (2008–045.).
  9. Kaminsky, Dan (1999). "Why Open Source Is The Optimum Economic Paradigm for Software".

External links