Social information processing
Social information processing is "an activity through which collective human actions organize knowledge."[1] It is the creation and processing of information by a group of people. As an academic field Social Information Processing studies the information processing power of networked social systems.
Typically computer tools are used such as:
- Authoring tools: e.g., blogs
- Collaboration tools: e.g., wikis, in particular, e.g., Wikipedia
- Translating tools: Duolingo, reCAPTCHA
- Tagging systems (social bookmarking): e.g., del.icio.us, Flickr, CiteULike
- Social networking: e.g., Facebook, MySpace, Essembly
- Collaborative filtering: e.g., Digg, the Amazon Product Recommendation System, Yahoo answers, Urtak
Although computers are often used to facilitate networking and collaboration, they are not required. For example the Trictionary in 1982 was entirely paper and pen based, relying on neighborhood social networks and libraries. The creation of the Oxford English Dictionary in the 19th century was done largely with the help of anonymous volunteers organized by help wanted adds in newspapers and slips of paper sent through the postal mail.
Current state of knowledge
The website for the AAAI 2008 Spring Symposium on Social Information Processing suggested the following topics and questions:[2]
- Tagging
- Tagging has already attracted the interest of the AI community. While the initial purpose of tagging was to help users organize and manage their own documents, it has since been proposed that collective tagging of common documents can be used to organize information via an informal classification system dubbed a folksonomy. There is hope that folksonomies will eventually help fulfill the promise of the Semantic Web.
- Human-based computation and collective intelligence
- What type of problems are amenable to human swarm computing approaches? How can we design the "wisdom of crowds" effect to benefit our problem solving needs?
- Incentives to participation
- How to elicit quality metadata and content from users? How can users resistant to tagging be encouraged to tag content?
- Social networks
- While users create social networks for a variety of reasons --- e.g., to track lives of friends or work or opinions of the users they respect --- network information is important for many applications. Globally, an information ecosystem may arise through the interactions among users, and between users and content. A community of users interested in a specific topic may emerge over time, with linkages to other communities giving insight into relationships between topics.
- Evolution of social media and information ecosystems
- How does content, and its quality, change in time? There is increasing interest in peer-production systems, for example in how and why some open-source projects like Linux and Wikipedia are successful. Under what circumstances are user-generated content sites likely to succeed and what implications does this have for information-sharing and learning within communities?
- Algorithms
- Before we can harness the power of the social information processing, we need new approaches to structured data analysis, specifically algorithms for synthesizing various types of metadata: e.g., social networks and tagging. Research in this area will provide a principled foundation for the development of new algorithms for social search, information discovery and personalization and other approaches that exploit the power of the social information processing.
See also
- Computer-mediated communication
- Social computing
- Social information processing theory
- Social media
- Social translucence
- Decision making
References
- ↑ AAAI (March 2008), Social Information Processing, AAAI Spring Symposium, Stanford University
- ↑ http://www.isi.edu/~lerman/sss07/
Further reading
- AAAI, Social Information Processing Symposium, Stanford, AAAI, March 2008.
- Camerer, Colin F., and Ernst Fehr, "When Does ‘‘Economic Man’’ Dominate Social Behavior?"
- Chi, Ed H., " Augmenting Social Cognition: From Social Foraging to Social Sensemaking," (video) (at Google), February 2007. (pdf), AAAI Symposium, March 2008, (video) (at PARC), May 2008.
- Crane, Riley (2008), Viral, Quality, and Junk Videos on YouTube, AAAI Seminar, March 2008
- Denning, Peter J. (2006), "Hastily Formed Networks", Communication of the ACM 49 (4)
- Denning, Peter J., "Infoglut," ACM, July. 2006.
- Denning, Peter J. and Rick Hayes-Roth, "Decision Making in Very Large Networks," ACM, Nov. 2006.
- Fu, Wai-Tat (April 2008), "The Microstructures of Social Tagging: A Rational Model", Proceedings of the ACM 2008 conference on Computer Supported Cooperative Work.: 229–238, doi:10.1145/1460563.1460600
- Fu, Wai-Tat (August 2009), "A Semantic Imitation Model of Social Tagging.", Proceedings of the IEEE conference on Social Computing: 66–72
- Hogg, Tad, and Bernardo A. Huberman, "Solving the organizational free riding problem with social networks"
- Huang, Yi-Ching (Janet), "You are what you tag," (ppt) AAAI Seminar, March 2008.
- Huberman, Bernardo, "Social Dynamics in the Age of the Web," (video) (PARC) January 10, 2008.
- Judson, Olivia, "Feel the Eyes Upon You," The New York Times, August 3, 2008,
- Lerman, Kristina, "Social Information Processing in News Aggregation," IEEE Internet Computing, November–December 2007.
- Lerman, Kristina, "Social Information Processing," (video) (at Google). June 2007.
- Nielsen, Michael, The Future of Science. A book in preparation.
- Nielsen, Michael, Kasparov versus the World. A blog post about a 1999 chess game in which Garry Kasparov (eventually) won a game against a collective opponent.
- Page, Scott E., The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies, Princeton University Press, 2007.
- Segaran, Toby, Programming Collective Intelligence: Building Smart Web 2.0 Applications, O'Reilly, 2007.
- Shalizi, Cosma Rohilla, "Social Media as Windows on the Social Life of the Mind"
- Smith, M., Purser, N. and Giraud-Carrier, C. (2008). Social Capital in the Blogosphere: A Case Study. In Papers from the AAAI Spring Symposium on Social Information Processing, K. Lerman et al. (Eds.), Technical Report SS-08-06, AAAI Press, 93-97.
- Spinellis, Diomidis, Wikipedia Faces no Limits to Growth (ACM article, subscription required).
- Stoyanovich, Julia, "Leveraging Tagging to Model User Interests in del.icio.us," (ppt) AAAI Seminar, March 2008.
- Whitaker, Steve, "Temporal Tagging," AAAI Symposium, March 2008.