Snub tetraapeirogonal tiling

Snub tetraapeirogonal tiling

Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex figure3.3.4.3.
Schläfli symbolsr{,4}
Wythoff symbol| 4 2
Coxeter diagram
Symmetry group[,4]+, (42)
DualOrder-4-infinite floret pentagonal tiling
PropertiesVertex-transitive Chiral

In geometry, the snub tetrapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{∞,4}.

Images

Drawn in chiral pairs, with edges missing between black triangles:

Related polyhedra and tiling

The snub tetrapeirogonal tiling is last in an infinite series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

Dimensional family of snub polyhedra and tilings: 3.3.4.3.n
Symmetry
4n2
[n,4]+
Spherical Euclidean Compact hyperbolic Paracompact
242
[2,4]+
342
[3,4]+
442
[4,4]+
542
[5,4]+
642
[6,4]+
742
[7,4]+
842
[8,4]+...
42
[,4]+
Snub
figure

3.3.4.3.2

3.3.4.3.3

3.3.4.3.4

3.3.4.3.5

3.3.4.3.6

3.3.4.3.7

3.3.4.3.8

3.3.4.3.
Coxeter
Schläfli

sr{2,4}

sr{3,4}

sr{4,4}

sr{5,4}

sr{6,4}

sr{7,4}

sr{8,4}

sr{,4}
Snub
dual
figure

V3.3.4.3.2

V3.3.4.3.3

V3.3.4.3.4

V3.3.4.3.5
V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.
Coxeter
Paracompact hyperbolic uniform tilings in [,4] family
Symmetry: [,4], (*42)
{,4} t{,4} r{,4} 2t{,4}=t{4,} 2r{,4}={4,} rr{,4} tr{,4}
Dual figures
V4 V4.. V(4.)2 V8.8. V4 V43. V4.8.
Alternations
[1+,,4]
(*44)
[+,4]
(*2)
[,1+,4]
(*22)
[,4+]
(4*)
[,4,1+]
(*2)
[(,4,2+)]
(2*2)
[,4]+
(42)

=

=
h{,4} s{,4} hr{,4} s{4,} h{4,} hrr{,4} s{,4}
Alternation duals
V(.4)4 V3.(3.)2 V(4..4)2 V3..(3.4)2 V V.44 V3.3.4.3.

See also

Wikimedia Commons has media related to Uniform tiling 3-3-4-3-i.

References

External links