Snub order-6 square tiling
Snub tetratritetragonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex figure | 3.3.3.4.3.4 |
Schläfli symbol | s{(4,4,3)} s{4,6} |
Wythoff symbol | | 4 4 3 |
Coxeter diagram | |
Symmetry group | [(4,4,3)]+, (443) [6,4+], (4*3) |
Dual | Order-4-4-3 snub dual tiling |
Properties | Vertex-transitive |
In geometry, the snub tetratritetragonal tiling or snub order-6 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of s{(4,4,3)} or s{4,6}.
Images
Drawn in chiral pairs:
Symmetry
The symmetry is doubled as a snub order-6 square tiling, with only one color of square. It has Schläfli symbol of s{4,6}.
Related polyhedra and tiling
The vertex figure 3.3.3.4.3.4 does not not uniquely generate a uniform hyperbolic tiling. Another with quadrilateral fundamental domain (3 2 2 2) and 2*32 symmetry is generated by :
Symmetry: [(4,4,3)] (*443) | [(4,4,3)]+ (443) |
[(4,4,3+)] (3*22) |
[(4,1+,4,3)] (*3232) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
h{6,4} t0{(4,4,3)} {(4,4,3)} |
h2{6,4} t0,1{(4,4,3)} r{(3,4,4)} |
{4,6} t1{(4,4,3)} {(4,3,4)} |
h2{6,4} t1,2{(4,4,3)} r{(4,4,3)} |
h{6,4} t2{(4,4,3)} {(3,4,4)} |
r{6,4} t0,2{(4,4,3)} r{(4,3,4)} |
t{4,6} t0,1,2{(4,4,3)} t{(4,3,4)} |
s{4,6} s{(4,4,3)} |
hr{6,4} hr{(4,3,4)} |
h{4,6} h{(4,3,4)} |
q{4,6} h2{(4,3,4)} |
Uniform duals | ||||||||||
V(3.4)4 | V3.8.4.8 | V(4.4)3 | V3.8.4.8 | V(3.4)4 | V4.6.4.6 | V6.8.8 | V3.3.3.4.3.4 | V(4.4.3)2 | V66 | V4.3.4.6.6 |
Symmetry: [6,4], (*642) (with [6,6] (*662), [(4,3,3)] (*443) , [∞,3,∞] (*3222) index 2 subsymmetries) (And [(∞,3,∞,3)] (*3232) index 4 subsymmetry) | ||||||
= = = |
= |
= = = |
= |
= = = |
= |
|
{6,4} | t{6,4} | r{6,4} | t{4,6} | {4,6} | rr{6,4} | tr{6,4} |
Uniform duals | ||||||
---|---|---|---|---|---|---|
V64 | V4.12.12 | V(4.6)2 | V6.8.8 | V46 | V4.4.4.6 | V4.8.12 |
Alternations | ||||||
[1+,6,4] (*443) |
[6+,4] (6*2) |
[6,1+,4] (*3222) |
[6,4+] (4*3) |
[6,4,1+] (*662) |
[(6,4,2+)] (2*32) |
[6,4]+ (642) |
= |
= |
= |
= |
= |
= |
|
h{6,4} | s{6,4} | hr{6,4} | s{4,6} | h{4,6} | hrr{6,4} | sr{6,4} |
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
- Square tiling
- Uniform tilings in hyperbolic plane
- List of regular polytopes
External links
- Weisstein, Eric W., "Hyperbolic tiling", MathWorld.
- Weisstein, Eric W., "Poincaré hyperbolic disk", MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
|